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Efficient Approximate Algorithms for the
Beacon Placement and its Dual Problem

JIEXUN WANG, T JAESEONG GIM,™! MASAHIRO SASAKI, !
Lianc Zuao! and HirosHI NaAGAMOCHI!

Given a graph and an integer L > 0, the Beacon Placement Problem (BPP)
asks to find a minimum set B of nodes such that for all edges e, at least one of
the two endpoints of e can be reached from some node (called an L-beacon) in
B using at most L edges. In particular, it reduces to the Vertex Cover problem
if L = 0. BPP arises from link-monitoring in computer networks. Generaliz-
ing the works of Horton and Lopez-Ortiz (2003, L = 1) and Kumar and Kaur
(2006, L = 0), Sasaki, Zhao and Nagamochi (2008) formulated this problem
and showed its NP-hardness for all L. They also provided an exact and an

approximate algorithm.

In this paper, we first generalize the problem to a robust covering formulation
which, for all edges e, asks that there exist at least re L-beacons that can reach
at least one of the two endpoints of e, where ro. € Z1 is a given robustness
requirement. Then we propose efficient approximate algorithms for this and
its dual problem. Studies on large-scale computer networks show the proposed
algorithms are quite efficient and accurate in practice.

1. Introduction

Link-monitoring is a fundamental issue in computer network management (see 1)0
2)04)-T)). For that purpose, active beacon based monitoring is proposed, in which each
link e is assigned to some node b (multiple links can be assigned to the same node),
and b monitors the transfer delay of e by regularly sending probe packets to the two
endpoints of e. The transfer delay of e is estimated by the difference of the two round-
trip times of the probes. For accurate and secure monitoring, the assignment must be
appropriate. For this, generalizing the works of Horton and Lopez-Ortiz?, Kumar and
Kaur®, Sasaki, Zhao and Nagamochis) proposed the concept of L-beacon, which can
monitor links reachable within L hops, i.e., at least one of the two endpoints of such
a link can be reached using L or less links. In particular, a 0-beacon monitors all its
incident links.

A natural question then asks, given a graph and an L > 0, to find a smallest set of
L-beacons to monitor (i.e., cover) all links. This is called the Beacon Placement Prob-
lem (BPP). We note previous studies further assumed that, due to a feature of TCP/IP
networks, a bridge (i.e., a link whose removal disconnects the graph) could be assigned
to any beacon despite of the distance. In this paper, we simplify the formulation by
removing that assumption. This does not change the nature of the problem. Then it is
obvious that BPP reduces to Vertex Cover if L = 0. For any fixed L > 1, it reduces to
Set Cover®. Therefore it is NP-hard for any fixed L > 0.

Since BPP is also a special case of Set Cover, we can apply the well-known greedy
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algorithm to get an O(logn)-approximation, where n is the number of nodes. Sasaki et
al® gave an exact algorithm and an efficient implementation of the greedy algorithm
for BPP. However, they are not suitable for large-scale instances because of the long
running time (see Section 4). In this paper, we first generalize the problem to a robust
covering formulation that allows links be covered by at least r. beacons for a given
robustness requirement r.. Then we give improved heuristics for this and its dual prob-
lem. For BPP, the new algorithm has O(LR(m + nlog R)) running time and requires
O(Rn + m) space, where m is the number of links (notice m > n — 1 for a connected
graph) and R = max.{r.} is the maximum requirement. We note that in practice L
and R are small, e.g., L < 10 and R < 3 are enough for the whole Internet. Thus the
new algorithm is much more efficient than the previous ones. For the dual problem
of BPP, our algorithm has O(Lm) running time and requires O(m) space. We remark
that the constant factors are small too. Studies on large-scale instances show the new

algorithms are quite efficient and accurate in practice for computer networks.
2. Formulation and Algorithm Sieve for BPP

Suppose we are given a connected graph G = (V, E) with n = |V| nodes and m = |E]|
edges (i.e., links). Let dist(u,v) denote the u, v-distance in G, i.e., the number of edges
on a shortest u,v-path. Let Bg(v) = {w € V | dist(v,w) < d} denote the set of nodes
that are reachable from a node v € V using d or less edges (d is called the radius). From
the definition, we have Bo(v) = {v} and Bg(v) = UwEF(v) By_1(w), where I'(v) denotes
the set of neighbors of v. We use E4(v) = {e = (u,w) € E | {u,w} N Ba(v) # 0} to
denote the set of edges that can be reached from v using d or less edges.

Probleml (BPP) Given G = (V,E), an L > 0 and robust requirements 7. > 0
for all edges e, find a minimum set B C V such that for all edges e = (u,v),
|BN (Br(u)U Br(v))| > re.

It can be written as the next Integer Programming.
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(IP) minimize ) a;

icV

5.t >

i€BL (w)UBL (v)
z; € {0,1}, VieV

(Notice Br(v) is not part of the input.) Thus previous studies treated the case of

xi > Te, Ve=(u,v)€EE

re = 1. Both of the exact and the approximate algorithms in 8) can be generalized to
this formulation straightforwardly. In this paper, we give a faster Algorithm Sieve.

Algorithm Sieve consists of two phases. In Phase 1, we try to find a feasible solu-
tion, or stops with the conclusion that no one exists. In constructing the solution, we
repeatedly check unchecked nodes v and let it be a beacon if there exists at least one
unsaturated edge e in Er(v) (i.e., e is covered by at most 7. — 1 beacons). In that case,
e is assigned to v. In Phase 2, we remove redundant beacons to get a minimal solution.
This is done by checking beacons in the reverse order they were added.

Checking if there exists an unsaturated edge in Er,(v) can be done by a BFS (Breadth-
First Search) from v with depth L. Therefore we can implement Sieve in O(mn) time
(it is O(m) for L = 0 since each edge is searched at most twice). This running time,
however, can be Q(mn) in general. To overcome this difficulty, we employ coverage
labels to avoid useless searching.

Leaving the correctness proof to later, first we describe a subroutine BFS(v, L) to
do BFS started from v with depth L, in which B holds the beacons found so far, k.
is the number of distinct beacons in B to which an edge e has been assigned. B.(v)
holds the edges that will be assigned to v if v is added into B later. E.(v) is the set of
unsaturated edges (i.e., ke < 7¢) in Bc(v), and E.(v) = {e € E.(v) | ke = re — 1}. /*
-+- */ are comments.

Subroutine BFS(v, L)

initialize a queue @ and enqueue(v), dist(v,v) = 0, mark v as searched;

while @ is not empty {
u = dequeue();
if dist(v,u) > L { return; } /* i.e., we have done */
if L+ 1—dist(v,u) > €y, for i* = argmin;{ly:} {
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Ly = L+ 1—dist(v, u);
for all e = (u,w) € E {
Bc(v) = Be(v) U {e};
if ke <re { Ec(v) = Ec(v)U{e}; }
if ke ==r. — 1 { Er(v) = E(v)U{e}; }
if w has not been searched {
enqueue(w), dist(v, w) = dist(v,u) + 1, mark w as searched;

}

The main procedure of Sieve is as follows, where V' holds the unchecked nodes, and E’

holds the unsaturated edges.
Algorithm Sieve
/* Phase 1: find a feasible solution */
B=0,V'=V,E'=E, ke=0forall e € E;
while B’ # 0 {
if V' is empty { halt; } (there is no feasible solution);
choose a node v € V' and let V' = V'\{v}; /* see Remark */
BFS(v, L);
if F.() £ 0 {
B = BU{v}, ke = ke + 1 for all e € B.(v)
E' = E' — E.(v); /* because all edges in E.(v) are now saturated */
}
}

/* Phase 2: remove rtedundant beacons */
ly;=0forallveVandi=1,...,R; /* reset the coverage labels */
for all v € B in the reverse order they were added {

B = B\ {v}, ke = ke — 1 for all e € B.(v);
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for all e € B.(v) {
if (ke < M) {
BFS(v, L);
ke = ke + 1 for all e € B.(v), B= B U {v};
break;

}

output B

Remark. The order for checking nodes is important. From our experience, the degree-
decreasing order works well for computer networks.

Theorem1 The above algorithm Sieve can be implemented to have O(LR(m +
nlog R)) running time and O(Rn + m) space.
Proof. An edge is searched if and only if we can update some coverage label of one of
its two endpoints. Since there are R labels for each vertex, and the maximum value is
L + 1, we see each edge is searched at most 2R(L + 1) times. On the other hand, for
each v, we can use a heap for finding argmin,{¢,,;} and updating it. It is easy to see
that other operations can be done in linear time. Therefore the total running time is
O(LR(m + nlog R)). The space complexity is obviously O(Rm). By remembering k.

at nodes, we can further reduce it to O(Rn + m). |

Let us show the correctness of Algorithm Sieve.
Observationl In Algorithm Sieve, it always holds that, for all v, there is no un-
saturated edge in Eq_1(v) for d = min;{¢,;}, where we let E_1(v) = 0.
Proof. Omitted. [ |
Observation2 In BFS(v, L), there is no need to search nodes u satisfying L + 1 —
dist(v,u) < min;{f.,;}.
Proof. Since the BFS is of depth L, we have dist(v,u) < L. By L 4+ 1 — dist(v,u) <
min;{¢.,;}, we see d = min;{f,;} > 1 and dist(v,u) > L 4+ 1 — d. Thus all nodes
w that could be found by continuing BFS(v, L) from u must satisfy dist(u,w) =
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dist(v, w) — dist(v,u) < L — (L+1—d) =d —1. In other words, w € Bg—1(u). On
the other hand, by the previous observation, there is no unsaturated edge in E4—1(v).

Hence there is no need to continue the BF'S for w. [ |

Therefore we can have the next theorem.
Theorem2 Algorithm Sieve can correctly find a feasible solution for BPP or deter-

mine that there is no feasible solution. [ |
3. Dual Problem and Algorithm
Now let us consider a dual problem of BPP.

(DP) maximize Z TeYe

eelR

s.t Z e < 1, VieV

e€EL (i)
ye € {0,1}, Vee€ E.
For L = 0 and r. = 1, this is nothing but the maximum matching problem, which can
be solved in O(y/nm) time. In this paper, we give a fast heuristic. Again we can use
the coverage label. In fact, since the coverage constraint is 1 this time, for each node
v, only one label is enough.
Subroutine DualBFS(v, L)
initialize a queue @ and enqueue(v), dist(v,v) = 0, mark v as searched;
while @ is not empty {
u = dequeue();
if dist(v,u) > L { return; } /* i.e., we have done */
if L+1—dist(v,u) >4y {
Ly = L+ 1 —dist(v, u);
for all e = (u,w) € E {
if w has not been searched {

enqueue(w), dist(v, w) = dist(v,u) + 1, mark w as searched;
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Algorithm DualSieve
M=0,¢,=0foralveV;
for all e = (u,v) € E {
if £, <land ¢, <1{
DualBFS(u, 2L + 1), DualBFS(v, 2L + 1);
M =M U {e};

In a similar way as Sieve for BPP, we can show the next theorem.
Theorem3 In O(Lm) time and O(m) space, Algorithm DualSieve can correctly

find a feasible solution for (DP) or determine that there is no feasible solution. |
4. Experimental results

To evaluate the proposed algorithm, we studied a number of networks. All were tested
on a PC with an Intel Xeon CPU X5260 (3.33GHz) and 16G RAM.

First we compared known algorithms using networks generated by GTgraph (http:
//www.cc.gatech.edu/~kamesh/GTgraph/). Based on the R-MAT model®, they are
supposed to be scale-free and small-world, which is considered good model for com-
puter networks. The results are shown in Tables 1 and 2. For easy understanding, we
also plot the data of Table 2 in a figure, where the data of LowerBound (Sasaki et al®)
are omitted. We note that 10000-node is the limit for the exact algorithm in practice
and our heuristics are fast and quite accurate.

For instances with more than 10,000 nodes, the CPLEX-based exact algorithm (with
exponential running time) and the greedy algorithm (with O(mn) running time) do not
work (in the time limit of 3000 seconds). Therefore in the following we only show the

result of Sieve and DualSieve. The next instance is also generated by GTgraph with
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01 000 1,000000 1,4430 GTgraph D00 0O0O0O0OOO0OOOOOOP. =10.
Table 1 Results for 1,000-node, 1,443-edge GTgraph network with r. = 1.

Exact® Greedys) LowerBound® Sieve DualSieve

L |B| | time (s) |B| | time (s) |B| | time (s) |B| | time (s) |B| | time (s)

0 | 460 0.01 | 474 0.00 | 458 0.00 | 472 0.00 | 437 0.00

1| 163 0.09 | 183 0.01 | 162 0.02 | 178 0.00 | 152 0.00

2 70 0.15 78 0.00 70 0.04 80 0.00 64 0.00

3 38 0.14 44 0.02 38 0.05 43 0.00 37 0.00

4 21 0.25 26 0.02 21 0.10 24 0.00 20 0.00

5 13 0.44 15 0.06 12 0.15 15 0.00 10 0.00

6 8 0.47 12 0.07 8 0.20 11 0.00 8 0.00

7 6 0.44 7 0.09 6 0.22 8 0.00 6 0.00

8 4 0.41 6 0.11 4 0.25 5 0.00 4 0.00

9 4 0.42 5 0.13 4 0.28 4 0.00 4 0.00

02 000 10,000000 15,0870 GTgraph 00000000000 000Or, =10.
Table 2 Results for 10,000-node, 15,087-edge GTgraph network with r. = 1.

Exact®) Greedys) LowerBound® Sieve DualSieve
L IB| | time (s) |B| | time (s) IB| | time (s) |B| | time(s) IB| | time(s)
0 4558 0.10 4745 0.01 4557 0.04 4701 0.00 4343 0.00
1 1534 75.2 1752 0.02 1531 0.78 1729 0.01 1396 0.00
2 667 177.26 824 0.07 662 3.09 799 0.00 589 0.00
3 307 1018.34 372 0.26 303 7.00 373 0.01 270 0.00
4 144 792.21 170 0.48 142 12.48 176 0.01 126 0.00
5 71 185.47 86 1.30 70 17.44 88 0.01 64 0.00
6 36 137.56 48 2.95 35 19.10 44 0.01 28 0.00
7 20 65.88 28 4.70 20 23.78 25 0.01 17 0.00
8 13 65.11 17 5.18 13 27.55 16 0.00 12 0.00
9 9 67.94 12 5.52 9 30.06 12 0.00 9 0.01

10,000,000 nodes. From the table, we see that the gap of Sieve and DualSieve for this
instance is less than 2, which means the solution of Sieve (DualSieve) is within 2 times
(at least half) of the optimal value.

Finally we tried a real network. The ITDK data is an Internet router network pub-
lished by CAIDA (http://www.caida.org/), which has 192244 nodes and 607610 links.
The results are shown in Table 4, in which we also show the results for r. = 2 and

re = 3. Notice that the result for (DP) with r. = R is simply R times of the result with
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Fig.1 Results for 10,000-node, 15087-edge GTgraph network with r. = 1.

re = 1 (see the formulation). Again, we can see that both of Sieve and DualSieve are

quite accurate.
5. Conclusion

In this paper, we formulated a robust version of the beacon placement problem (BPP)
and showed efficient algorithms for this and its dual problem. Experimental results show
they are fast (linear order in practice) and are quite accurate for large-scale computer

networks.
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0 3 00O 10,000,000000 17,421,301 0 GTgraph 0000000000000 Or. =
Table 3 Results for 10,000,000-node, 17,421,301-edge GTgraph network with r. = 1.

Sieve DualSieve

L |B| | time (s) Bl | time (s)

0 4593511 10.92 4244140 11.26

1 1529343 22.97 1230435 13.09

2 598350 33.56 454091 15.69

3 241308 45.01 174111 18.99

4 96997 57.80 66013 22.82

5 38368 71.50 24756 27.21

6 15005 85.11 9102 31.87

7 5890 95.70 3241 36.52

8 2269 103.32 1139 40.10

9 861 104.59 432 41.05

04 ITDKOOOOODOODOOD
Table 4 Results for the ITDK data
Greedy Sieve DualSieve

Te IB| | time (s) IB| | time (s) IB| | time (s)
1 75713 0.33 77978 0.19 69161 0.13
2 n/a n/a 190914 0.25 | 138322 0.13
3 n/a n/a | no solution 0.00 | 207483 0.13
1 18120 2.62 17918 0.32 15415 0.14
2 n/a n/a 38971 0.50 30830 0.14
3 n/a n/a 63737 0.67 46245 0.14
1 6569 33.30 6370 0.44 5552 0.17
2 n/a n/a 13480 0.73 11104 0.17
3 n/a n/a 21401 1.01 16656 0.17
1 2671 389.13 2596 0.56 2216 0.21
2 n/a n/a 5386 0.97 4432 0.21
3 n/a n/a 8394 1.36 6648 0.21
1 1128 2625.00 1112 0.68 932 0.26
2 n/a n/a 2290 1.22 1864 0.26
3 n/a n/a 3540 1.73 2796 0.26
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