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スターグラフに基づく対費用効果に優れたP2Pオーバーレイの提案

藤田　聡†1

In this paper, we propose a new network topology for P2P overlay. The
proposed topology is a contracted graph of an n-star, which realizes a short
diameter with a small degree compared with conventional hypercubic networks
such as Chord and skip graph.

1. Introduction

Peer-to-peer (P2P) networks have attracted considerable attentions in recent
years. A P2P is a distributed system consisting of several nodes called peers,
connected with a logical network called P2P overlay. Existing P2P networks can
be classified into two categories by the way of controlling the topology of the
P2P overlay and the way of data management in the network; i.e., it is either
structured or unstructured. A typical unstructured P2P is Gnutella6) proposed
in 2000. In this system, the topology of the overlay is not explicitly controlled by
the participating peers, and the search of a target file held by a peer is conducted
through the flooding of a query message to the peers within a predetermined
region centered at the requesting peer (it is generally controlled by setting TTL
(Time-to-Live) to each query message). On the other hand, in structured P2Ps,
we can design the topology of the P2P overlay and the way of data allocation, in
such a way that the location of target file is quickly identified, the load of peers
is balanced, and it is adaptive to the dynamic change of the set of participating
peers due to join and leave of those peers.

In this paper, we propose a new network topology for structured P2P overlay.
The proposed topology is a generalization of the star graph, which is known to
accommodate n! vertices while keeping the degree of each vertex to n − 1 and
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the diameter of the network to ⌈3(n − 1)/2⌉1). We extend the definition of star
graph in such a way that:
1) It accommodates any number of vertices (we use symbol N to denote the

number of vertices in a graph),
2) The degree of each vertex is bounded by 2 log N

log log N (1 + o(1)), and
3) The diameter of the resultant network is bounded by 3 log N

2 log log N (1 + o(1)).
Note that it asymptotically beats the performance of conventional hypercubic
P2P overlays such as Chord11) and skip graph2) in which the degree and the
diameter of the graph are both bounded as Θ(log N). In the literature, there are
several approaches to extend the definition of the star graph in such a way that
it can accommodate any number of vertices4),5),8),10). A basic technique used in
such schemes is to prepare several star graphs of various sizes (e.g., n!, (n − 1)!,
(n−2)!, and so on), and to “connect” them so as to make the number of vertices
in the resultant graph to be N . For example, we can obtain a graph consisting
of 30 vertices by connecting a star graph with 24 (= 4!) vertices and another
star graph with 6 (= 3!) vertices through parallel edges. A similar idea has been
applied to other classes of network topologies, such as hypercube3),9),12)–15) and
Kautz digraph7).

In contract to such previous schemes, in our scheme, we will take an approach
of “split and merge” of the vertices of a given network to several (sub)vertices in
such a way that the total number of vertices in the network becomes N . More
concretely, 1) we focus on a contracted graph of a star graph defined by prefixes
of vertices in the star graph, and apply a marking procedure to have a set of
vertices which should be split into several (sub)vertices, and 2) focus on another
contracted graph which is obtained by contracting pairs of adjacent vertices in a
given graph.

The remainder of this paper is organized as follows. Section 2 describes nec-
essary notations. A naive extension of the star graph is introduced in Section
3. The proposed scheme is given in Section 4. Finally, Section 5 concludes the
paper with future problems.
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Fig. 1 Star graph S4.

2. Preliminaries

Let Vn be the set of n! permutations of symbols {1, 2, . . . , n}. Let ui denote
the ith digit of permutation u. A generator gi (2 ≤ i ≤ n) is a function from Vn

to Vn which interchanges symbol ui with symbol u1; i.e., for given permutation
u = u1u2 . . . un (∈ Vn),

gi(u) = uiu2 . . . ui−1u1ui+1 . . . un.

A star graph on n symbols (or n-star), denoted by Sn, is an undirected graph
with vertex set Vn and an edge set En, where En = {{u, gi(u)} | u ∈ Vn, 2 ≤
i ≤ n}. Figure 1 illustrates the star graph on four symbols.

In the following, we use symbol N to denote the number of vertices in a given
graph. It is known that the degree of vertices in Sn is n− 1, and the diameter of
Sn is

⌊
3(n−1)

2

⌋
. Those values could be represented in term of the total number

of vertices N as follows:
Remark 1 Let N = |Vn|. Then, the degree of vertices in Sn is at most
log N

log log N (1 + o(1)) and the diameter of Sn is at most 3 log N
2 log log N (1 + o(1)).

Proof. Since (n/2)n ≤ n!, we have log N ≥ n log(n/2) = n(log n − 1). On the
other hand, since n! ≤ nn, log log N ≤ log n + log log n. Thus,

n ≤ log N

log n − 1
≤ log N

log log N − log log n
=

log N

log log N
(1 + o(1)) .

Hence the claim follows. Q.E.D.

3. A Contracted Graph of Star Graph

Given Sn, we can construct a class of graphs by repeatedly contracting several
vertices into a vertex. Such graph is generally referred to as a contracted graph,
and our proposed scheme is based on such notion of contraction of vertices. In
the following, to clarify the exposition, we introduce the notion of “bags” to
represent contracted vertices. We will use symbols x and y to denote bags, and
symbol B to denote a set of bags. Each bag corresponds to a prefix of a vertex in
Vn. In the following, we often identify a bag with its corresponding prefix. Bag
x contains all vertices in Vn to have prefix x. For example, when n = 5, bag 123
contains two vertices 12345 and 12354 in Vn.

Definition 1 Let G(B) be a graph with a bag set B and an edge set EB ,
where two bags x, y are connected by an edge in EB if and only if there exist two
vertices u, v ∈ Vn such that u ∈ x, v ∈ y, and {u, v} ∈ En.
For example, two bags 123 and 423 in B are connected by an edge in EB since
there are two vertices 12345 and 42315 connected by an edge in S5. Note that
by the definition of Sn, any two vertices contained in a bag are not connected by
an edge in En.

Definition 2 (Type of edges) An edge in EB is said to be a base edge if
it connects two bags x and y such that: 1) x, y ∈ Vn′ for some n′ ≤ n, and 2) x

and y are connected by an edge in Sn′ . The other edges in EB are called cross
edges.
For example, when n = 5, bags 123 and 213 are connected by a base edge, and
bags 123 and 423 are connected by a cross edge.

For any 2 ≤ i ≤ n, let Bn,i denote a set of bags defined as follows:
Bn,i = {u1u2 . . . un−i | u1u2 . . . un ∈ Vn}.

For example, when n = 5 and i = 3, set B5,3 consists of the following 20 (= 5×4)
bags:

B5,3 = {12, 13, 14, 15, 21, 23, 24, 25, . . . , 54}.
By definition, each bag in Bn,i contains i! vertices in Vn. For example, bag 12
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in B5,3 contains six (= 3!) vertices; i.e., 12345, 12354, 12435, 12453, 12534, and
12543. Bag 12 is connected with bag 21 by a base edge, and is connected with
three bags 32, 42, and 52 by cross edges. Graph G(B4,2) is illustrated in Figure
2 with a correspondance to S4.

Remark 2 For any 2 ≤ i ≤ n−1, each bag in G(Bn,i) is incident on n− i−1
base edges and i cross edges; i.e., the degree of each bag in G(B) is n−1 regardless
of the value of i.

The above claim indicates that by increasing the value of i, we have a sequence
of graphs G1, G2, . . . , Gn−1 such that: 1) G1 = Sn, 2) Gn−1 = Kn, and 3)
Gi = G(Bn,i) for each 2 ≤ i ≤ n − 2. Since the number of bags in G(Bn,i) is
n!/i!, it implies that we have a sequence of graphs consisting of the following
number of bags:

n!, n!/2, n!/3!, n!/4!, . . . , and n

while keeping the degree of each bag to n − 1. Since n! is n times larger than
(n−1)!, the above simple scheme realizes a refinement of the size of graphs, which
has a big gap between (n− 1)! and n! in the original definition of the star graph.

Example 1 The number of vertices in a 10-star is 10! = 3628800 and the
number of vertices in a 9-star is 9! = 362800; i.e., the former is ten times larger
than the latter. (The degree of the former one is 9, and the degree of the latter one
is 8.) The above construction refines the gap, since we have a graph consisting
of 10!/2 = 1814400 vertices and another graph consisting of 10!/3! = 604800
vertices, while keeping the degree of vertices to be 9.

4. Proposed Method

Let N be a positive integer. In this section, we propose a scheme to construct
a set of bags B such that:
1) N ≤ |B| ≤ 2N ,
2) each bag is adjacent with at most log N

log log N (1+ o(1)) bags in graph G(B), and
3) the diameter of G(B) is 3 log N

2 log log N (1 + o(1)).
Given such graph, we can construct a graph such that: 1) it consists of N ver-
tices, 2) the degree is at most 2 log N

log log N (1 + o(1)), and 3) the diameter is at most
3 log N

2 log log N (1 + o(1)), in the following manner:
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(a) Graph G(B4,2).
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(b) Correspondance to S4.
Fig. 2 Graph G(B4,2).

• Calculate a maximum matching of G(B)
• Select arbitrary |B|−N edges in the matching, and contract two end vertices

of each edge into a single vertex.
Those values are asymptotically smaller than the values for hypercubic graphs,
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such as Chord and skip graph.
4.1 Overview
Let n be the smallest integer such that |Vn| ≥ N , i.e.,

(n − 1)! < N ≤ n!.
We use Vn as the underlying set of permutations; i.e., each digit of a string
corresponding to a bag in B is drawn from set {1, 2, . . . , n}. Let k be an integer
such that

(k − 1)! < n − 1 ≤ k!.
We will construct a set of bags B such that each bag in B corresponds to a prefix
of a vertex in Vn of length either n− k or n− k + 1. Note that it holds 1 ≤ n− k

and n − k + 1 ≤ n − 1, since 2 ≤ k ≤ n − 1 for any n ≥ 3. In addition, by
construction, |Bn,j | > N for any j < k; i.e., Bn,k−1 contains sufficiently large
number of bags even if the number of bags in Bn,k is smaller than N .

An outline of the proposed scheme is described as follows. We start our con-
struction from graph G(Bn,k) consisting of n!/k! (≤ N) vertices, and will try
to mark bags in such a way that: 1) the number of marked bags is at least
⌈(N − |Bn,k|)/(k − 1)⌉ and at most ⌈(2N − |Bn,k|)/(k − 1)⌉, and 2) each un-
marked bug is adjacent with at most one marked bag. We then split each marked
bag into k sub-bags, by increasing the length of the associated string from n− k

to n − k + 1. See Figure 3 for illustration (in this figure, bag 13 is split into
two sub-bags 132 and 134, which increases the degree of adjacent blue bags from
three to four, but does not increase the degree of red sub-bags). Each sub-bag
is adjacent with n − 1 (sub)bags in the resultant graph, since the degree of bags
in G(Bn,k−1) is n − 1 as was claimed in Remark 2, and a contraction of vertices
does not increase the degree of uncontracted vertices. Thus, the above splitting
certainly increases the number of bags in the resultant graph, and by construc-
tion, for each unmarked bag, the number of adjacent bags increases by at most
k−1; i.e., we can bound the degree of each bag in the resultant graph by at most
n + k − 2.

4.2 Class of Bags
Before describing the details of the proposed scheme, we introduce several

notations.
Definition 3 (Class of bags) Let x be a bag of length n′ (≤ n), and k be
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(a) Before splitting.
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(b) After splitting.
Fig. 3 Split of a bag into k (= 2) sub-bags.

an integer satisfying 1 ≤ k ≤ n′. Bag x is said to be of class Ci1,i2,...,ik
, if value

j appears at the ithj digit of x for any 1 ≤ j ≤ k, where ij takes value 0 if j does
not appear in x.

In general, each bag belongs to different classes. For example, bag 123 belongs
to three classes C1, C1,2, and C1,2,3, and bag 234 belongs to three classes C0, C0,1,

c⃝ 2009 Information Processing Society of Japan4

Vol.2009-AL-125 No.4
2009/7/21



IPSJ SIG Technical Report

and C0,1,2. Note that the number of integers in the subscript does not exceed
the length of the string corresponding to the bag. In the following, to simplify
the exposition, we often represent a sequence of integers as α and β (including
an empty sequence); e.g., Ci1,i2,...,ij is represented as Cα,ij and Cβ,ij−1,ij us-
ing symbols α and β instead of sequences “i1, i2, . . . , ij−1” and “i1, i2, . . . , ij−2,”
respectively.

Lemma 1 Let x and y be bags belonging to classes Cα,i and Cα,j , respec-
tively, for some sequence α. If i ̸= 0, j ̸= 0, and i ̸= j, then any two vertices
belonging to x and y are not adjacent with each other in Sn.

Lemma 2 Let x and y be bags belonging to classes Ci and C0, respectively.
If i ̸= 0 and i ̸= 1, then any two vertices belonging to x and y are not adjacent
with each other.

4.3 Marking Algorithm
Recall that: 1) |Bn,k| = n|Bn−1,k|, 2) the number of bags in class C0 is

k|Bn−1,k|, and 3) the number of bags in class Ci, 1 ≤ i ≤ n − k, is |Bn−1,k|.
Our proposed marking scheme is described as follows.

Algorithm
Step 1: Let m = ⌈(N − |Bn,k|)/(k − 1)⌉; i.e., m is the number of bags which

should be marked by this algorithm.
Step 2: At first, we mark bags in class C1. If m < |Bn−1,k|, then we stop

the algorithm after marking any m bags in C1. Otherwise, update m as
m := m − |Bn−1,k| and proceed to Step 3, after marking all bags in C1.

Step 3: If m > k|Bn−1,k|, then go to Step 4 after marking all bags in classes
C0 and letting m := m − k|Bn−1,k|. Otherwise, simply go to Step 4.

Step 4: We mark bags in classes C2, C3, . . ., and Cn−k, in the following manner:
Let p = ⌊m/|Bn−1,k|⌋ and q = m−p×|Bn−1,k|. Note that 0 ≤ p ≤ n−k−1,
and q = 0 must hold if p = n − k − 1. We then mark all bags contained in
classes C2, C3, . . . , Cp+2.

The correctness of the above marking scheme is certified by the following three
observations:
• Marking of C1: Each bag in Ci, i ̸= 0, is adjacent with exactly one bag in

C1, and any two bags in C1 are not adjacent. Thus, the marking of bags in
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Fig. 4 Bags in class C1.

class C1 in Step 2 increases the degree of bags in Ci, i ̸= 0, by at most k− 1,
and does not increase the degree of bags in C1. See Figure 4 for illustration.

• Marking of C0: Bags in C0 are not adjacent with bags in Ci, for any
2 ≤ i ≤ n − k. Thus, the marking of bags in class C0 does not increase the
degree of bags in Ci for 2 ≤ i ≤ n−k. In addition, since the marking of C0 is
conducted only after marking of all bags in C1, it does not increase the degree
of (sub)bags generated from bags in C1. See Figure 4 (a) for illustration.

• Marking of other bags: Bags in class Ci, 2 ≤ i ≤ n − k, are not adjacent
with bags in class Cj , for any 2 ≤ j ≤ n− k and j ̸= i. Thus, the marking of
bags in class Ci does not increase the degree of bags in Cj , if C1 has already
been marked. See Figure 4 (b) for illustration.

By construction, we immediately have the following claim.
Lemma 3 For any N , the proposed scheme marks vertices in G(Bn,k) in such

a way that each unmarked bag in G(Bn,k) is adjacent with at most one marked
bag.

4.4 Splitting
After completing the marking of bags in G(Bn,k), we split each marked bag

into k sub-bags in order to align the number of resultant sub-bags to given N .
Thus, we have the following theorem.

Theorem 1 The proposed scheme generates a contracted graph of Sn such
that: 1) the length of strings associated with each vertex is either n−k or n−k+1,
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Fig. 5 Bags in classes C0 and C2.

and 2) the degree of each vertex is at most n + k and at least n − 1.
Finally, since a split of bag into sub-bags does not increase the diameter of the

network, the diameter of the resultant network does not exceed the diameter of
Sn, i.e., at most 3(n − 1)/2.

5. Concluding Remarks

Future problems are listed below:
• Given n and k, how to increase or decrease the number of vertices in the

resultant graph, in the range of n!/k! to n!/(k − 1)!, in a distributed manner
(probably we need to introduce a kind of management peer, in order to keep
the current values of n and k).

• How to decrease the value of k when N increases to n!/(k − 1)!, and how to
increase the value of k when N decreases to n!/k!.

• How to increase the value of n, when N increases to n!.
• How to realize an efficient routing in the resulting network, including permu-

tation routing, broadcasting, and multicasting.
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