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Prediction of RNA Secondary Structures with Binding Sites

Using Dynamic Programming Algorithm

Unyanee Poolsap,†1 Yuki Kato†1

and Tatsuya Akutsu†1

Noncoding antisense RNAs have recently occupied considerable attention and
several computational studies have been made on RNA-RNA interaction pre-
diction. In this technical report, we present novel dynamic programming al-
gorithms for predicting the minimum energy secondary structure with binding
sites of one of the two interacting RNAs. Experimental results on several known
RNA-RNA interaction data show that our proposed method achieves good per-
formance in accuracy.

1. Introduction

In recent years, analysis of noncoding RNAs has attained great importance.
They play a crucial role in some biological processes including posttranscrip-
tional regulation of gene expression. Some noncoding RNAs, called antisense
RNAs, aim at inhibiting their target RNA function through base complemen-
tary binding. Some antisense RNAs use full complementarity to their target for
binding, whereas a number of antisense RNAs use partial complementarity4), and
several kissing hairpin structures (Fig. 1) caused by loop-loop interaction have
been reported5).

To predict joint secondary structures of interacting RNAs (e.g., antisense-target
RNA complexes), several dynamic programming (DP) algorithms have been pro-
posed so far. Andronescu et al.2) developed the PairFold algorithm for secondary
structure prediction of two interacting RNAs of minimum free energy. Since this
algorithm is based on the Zuker’s algorithm15) for predicting pseudoknot-free
structure of a single RNA, its time complexity is O(n + m)3 where n and m
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Fig. 1 A kissing hairpin.

are respective lengths of two input sequences. The PairFold algorithm, however,
cannot deal with any kissing hairpins, which are essentially equivalent to pseudo-
knotted structures when concatenating two interacting sequences. On the other
hand, DP algorithms presented by Pervouchine11), Alkan et al.1) and Kato et
al.7) can predict joint secondary structures including kissing hairpins in O(n3m3)
time. However, the time complexity of these algorithms is prohibitive in case
n ≃ m (i.e., O(n6)), which is the same complexity of a prediction algorithm for
pseudoknots13).

Viewing RNA-RNA interaction prediction from a different angle inspires us to
consider the situation where we aim at predicting the secondary structure with
binding sites of one of the two interacting RNAs on condition that interacting
sites of the other RNA are known. In fact, we assume that a “profile” of in-
termolecular binding is given in advance. This assumption could be helpful in
target site prediction for antisense RNAs. In this technical report, we propose
novel DP algorithms for predicting RNA secondary structures with binding site
information. Notice that our formulation of the prediction problem requires that
the order in which binding sites appear for antisense RNA should be the same as
the order for its target RNA. To deal with base-paired structure as well as bind-
ing sites, we design an extension of the classical Nussinov’s algorithm9), which
minimizes the sum of base pair energies. In addition, we develop a DP algorithm
that can incorporate stacking energy, which is based on the Zuker’s algorithm15).
Both of our algorithms can run in O(N3n3) time where N is the number of bind-
ing sites and n is an input length. Since N can be regarded as a constant in
most cases, the time complexity of our algorithms can be evaluated as O(n3).
We demonstrate the performance of our approach using the proposed algorithm
for base pair energy.

The rest of this technical report is organized as follows. In Section 2, we provide
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formal descriptions of the prediction problem concerned and DP algorithms. We
then show some experimental results of the prediction for real interacting RNAs
in Section 3. Section 4 concludes the technical report.

2. Methods

In this section, we will present algorithms based on dynamic programming (DP)
for predicting RNA secondary structures with binding sites. Given an RNA se-
quence (target sequence) with unknown structure and a profile of intermolecular
binding, our algorithms return the optimum secondary structure and locations of
binding sites in order from 5′ to 3′. Before going through the details of the algo-
rithms, let us begin with definitions of RNA secondary structure and prediction
problem considering binding sites.

2.1 Preliminaries
Definition 1 (RNA secondary structure). An RNA sequence is represented by
a string of n characters s = s1s2 · · · sn where si ∈ Σ = {A, C, G,U}. A secondary
structure of the sequence s is a set of base pairs (si, sj) such that the following
conditions hold:
• 1 ≤ i < j ≤ n;
• Each base can be paired with at most one base;
• (si, sj) is a valid base pair, i.e., any of Watson-Crick pairs {A, U} and {C, G},

and a wobble pair {G, U};
• j − i ≥ t, where t is a small positive number.
As stated earlier, our algorithms take a target RNA sequence and a binding

site profile as inputs. Therefore, the binding site profile has to be prepared in
advance. Informally, the steps of how to create the binding site profile are as
follows:
( 1 ) Given an antisense-target RNA complex with known structure, we search

for all binding sites of the antisense RNA, written as B̄1, B̄2, . . . , B̄N .
( 2 ) Using the fact that the antisense binds its target via base complementarity,

we compute the complementary subsequences to B̄1, B̄2, . . . , B̄N , denoted
by B1, B2, . . . , BN . For example, if B̄1 = GGACU, B1 = CCUGA. Note
that Bp (1 ≤ p ≤ N) itself is not a subsequence of the target sequence.

( 3 ) For each p (1 ≤ p ≤ N), if a subsequence of the target that matches Bp

Table 1 Example of an energy function e

Base pair Energy value
G-U -1
A-U -2
C-G -3

can be found at the location that starts from i and ends at j, we assign a
finite value to the profile, represented by Ip(i, j), otherwise ∞ is assigned.

Now, let us formally define the binding site profile.
Definition 2 (Binding site profile). Let N be the number of binding sites and
B̄p = s̄ip s̄ip+1 · · · s̄jp ∈ Σ∗ (1 ≤ p ≤ N) denote a binding site (subsequence) of
an antisense RNA sequence s̄ = s̄1s̄2 · · · s̄m ∈ Σ∗, where ip and jp are fixed and
satisfy 1 ≤ ip < jp ≤ m for each p. Let sisi+1 · · · sj be a subsequence of a target
RNA sequence s = s1s2 · · · sn ∈ Σ∗. Then, for each p (1 ≤ p ≤ N), a binding
site profile Ip(i, j) of sisi+1 · · · sj is defined as follows:

Ip(i, j) =


c

j∑
k=i

e(sk, s̄kp) (j − i = jp − ip,

and sk is complementary to s̄kp),

∞ (otherwise)

(1)

where c is a positive constant, and e is an energy function that maps from a valid
base pair to the corresponding energy value (see Table 1).

With these definitions, we define the prediction problem of RNA secondary
structure with binding sites.
Definition 3 (RNA secondary structure prediction with binding sites).
Input: a target RNA sequence s = s1s2 · · · sn ∈ Σ∗ and N binding site profiles

I1, I2, . . . , IN of s.
Output: the optimum secondary structure of s whose subsequences match the

binding sites in the order from I1 to IN .
2.2 DP algorithms
We develop two prediction models based on DP. The first DP model is an

extension of the Nussinov’s algorithm9) using a simple base pair energy function.
For the second model, we extend the first model to utilize the stacking energy
and loop energy functions instead of the simple energy function, which is based
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on the Zuker’s algorithm15).
2.2.1 Base pair energy model
In the beginning, we define DP tables to predict secondary structure with biding

sites. Let s = s1s2 · · · sn be an RNA sequence. As in the conventional case,
we let W (i, j) denote the minimum free energy of secondary structure formed
from a subsequence sisi+1 · · · sj of s. In addition, let Wpq(i, j) be the minimum
free energy of secondary structure for sisi+1 · · · sj that contains binding sites
corresponding to Ip, Ip+1, . . . , Iq (1 ≤ p ≤ q ≤ N).

These DP tables are initialized as follows:
W (i, i) = 0, Wpq(i, i) = ∞ (1 ≤ ∀i ≤ n; 1 ≤ ∀p ≤ ∀q ≤ N).

The recursions are classified into three cases as shown below: In the first case,
we use the simple Nussinov’s algorithm to predict secondary structure that does
not contain any binding sites. The second case is used for dealing with the
structure with just one binding site. The third case is used for predicting the
structure with two or more binding sites.

Case 1 (the Nussinov’s algorithm):

W (i, j) = min



W (i + 1, j),

W (i, j − 1),

W (i + 1, j − 1) + e(i, j),

min
i≤k<j

{W (i, k) + W (k + 1, j)}

(2)

where e(i, j) is the simple energy function of a base pair (si, sj) (see Table 1). In
the above DP recursion, the first and the second cases of minimization represent
the cases where si and sj do not form a base pair. The third case says that si

and sj form a base pair, and the resulting energy e(si, sj) is added to the present
value of W . The forth formula represents the bifurcation structure. Note that k

is the position at which the structure bifurcates in such a way that the sum of
energies of two substructures is minimized.
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Fig. 2 Recursion for Wpp(i, j). A dashed curve indicates that we do not know whether or not
two bases connected by the curve form a base pair, and a solid curve shows that two
bases connected by it definitely form a base pair.

Case 2 (p = q):

Wpp(i, j) = min



Ip(i, j),

Wpp(i + 1, j),

Wpp(i, j − 1),

Wpp(i + 1, j − 1) + e(i, j),

min
i≤k<j

{Wpp(i, k) + W (k + 1, j)},

min
i≤k<j

{W (i, k) + Wpp(k + 1, j)}.

(3)

The first case means that sisi+1 · · · sj is a binding site and we adopt the cor-
responding score Ip(i, j) computed in the equation (1). The formulas from the
second through the fourth are similar to the ones from the first through the third
in the recursion (2). The fifth case represents the bifurcation structure where the
binding site is contained in the former part of the bifurcation. Because the latter
part of the bifurcation does not contain any binding sites, we use W computed
in the recursion (2). The last case is a counterpart of the fifth case. Following a
diagrammatic representation in13), we provide a schematic representation of the
recursion for Wpp(i, j) in Fig. 2.
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Fig. 3 Recursion for Wpq(i, j).

Case 3 (q ≥ p + 1):

Wpq(i, j) = min



min
i≤k<j

min
p≤r<q

{Wpr(i, k) + Wr+1,q(k + 1, j)},

Wpq(i + 1, j),

Wpq(i, j − 1),

Wpq(i + 1, j − 1) + e(i, j),

min
i≤k<j

{Wpq(i, k) + W (k + 1, j)},

min
i≤k<j

{W (i, k) + Wpq(k + 1, j)}.

(4)

The first case is designed for computing the bifurcation of secondary substruc-
tures, each of which contains the binding sites. It should be noted that we have
to find the position r at which a series of the binding sites is divided in such a
way that the total energy of substructures is minimized. The other cases can be
interpreted as in Case 2. Fig. 3 illustrates the above DP recursion.

We now evaluate the complexity of the above algorithm. Computing the equa-
tion (2) takes O(n3) time. The equations (3) and (4) can be computed in O(Nn3)
and O(N3n3) time, respectively. Therefore, the overall time complexity is eval-
uated as O(N3n3). By similar evaluation, we can see that the space complexity
is O(N2n2).

The minimum energy of the secondary structure of the input sequence is equiv-
alent to W1,N (1, n), and the optimal secondary structure can be retrieved by
tracing back the DP table from W1,N (1, n).

2.2.2 Stacking energy model
Since the energy function used in the above DP algorithm is very simple, there

is room for further improvement of our DP model. It is widely accepted that cal-
culating contributions for stacking energy rather than individual contributions
for each base pair yield better prediction. Hence, we extend the above DP al-
gorithm based on this idea. In order to incorporate stacking energy into our
previous DP model, we introduce additional DP tables. Let V (i, j) be the mini-
mum free energy of secondary structure formed from a subsequence sisi+1 · · · sj

such that si and sj form a base pair. Let Vpq(i, j) be the minimum free energy
of secondary structure for sisi+1 · · · sj that contains binding sites corresponding
to Ip, Ip+1, . . . , Iq such that si and sj form a base pair. Note that W (i, j) and
Wpq(i, j) are defined in the same way as in the base pair energy model.

Initialization conditions for W and V are as follows:
W (i, i) = ∞, V (i, i) = ∞, Wpq(i, i) = ∞, Vpq(i, i) = ∞

(1 ≤ ∀i ≤ n; 1 ≤ ∀p ≤ ∀q ≤ N).
The revised version of the DP recursions is as follows:

Case 1 (the Zuker’s algorithm):

W (i, j) = min



W (i + 1, j),

W (i, j − 1),

V (i, j),

min
i≤k<j

{W (i, k) + W (k + 1, j)},

(5)

V (i, j) = min



eh(i, j),

V (i + 1, j − 1) + es(i, i + 1, j − 1, j),

min
i<i′<j′<j

{V (i′, j′) + ebi(i, i′, j′, j)},

min
i<k<j−1

{W (i + 1, k) + W (k + 1, j − 1)} + b

(6)

where eh(i, j) is an energy of a hairpin loop closed by a pair of (si, sj), es(i, i +
1, j − 1, j) is a stacking energy of (si, sj) and (si+1, sj−1), ebi(i, i′, j′, j) is an
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energy of a bulge or an interior loop closed by (si, sj) and (si′ , sj′), and b is a
penalty for a bifurcation structure. Note that in the recursion formula (5), the
case where si and sj form a base pair is changed to V (i, j). As can be seen in the
equation (6), V (i, j) is the minimization of four cases: The first case represents
an energy of a hairpin loop closed by (si, sj). The second formula adds the
stacking energy of (si, sj) and (si+1, sj−1) to the present value of V . The third
case represents a substructure where a bulge or an interior loop occurs in si · · · si′

and sj′ · · · sj . The fourth formula is used for computing bifurcation.
Case 2 (p = q):

Wpp(i, j) = min



Wpp(i + 1, j),

Wpp(i, j − 1),

Vpp(i, j),

min
i≤k<j

{Wpp(i, k) + W (k + 1, j)},

min
i≤k<j

{W (i, k) + Wpp(k + 1, j)},

(7)

Vpp(i, j) = min



min
i<i′<j′<j

{Ip(i′, j′) + eh′(i, i′, j′, j)},

Vpp(i + 1, j − 1) + es(i, i + 1, j − 1, j),

min
i<i′<j′<j

{Vpp(i′, j′) + ebi(i, i′, j′, j)},

min
i<k<j−1

{Wpp(i + 1, k) + W (k + 1, j − 1)} + b,

min
i<k<j−1

{W (i + 1, k) + Wpp(k + 1, j − 1)} + b

(8)

where eh′(i, i′, j′, j) is an energy of a hairpin closed by (si, sj) that contains
a binding site si′si′+1 · · · sj′ . Vpp(i, j) is computed by minimizing among five
choices: The first formula represents the case where Ip is contained in the hairpin
loop closed by a base pair (si, sj) and si′si′+2 · · · sj′ is a binding site. The other
cases are similar to those of V (i, j) recursion. We show an illustration of the
recursion Vpp(i, j) in Fig. 4.
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Fig. 4 Recursion for Vpp(i, j).

Case 3 (q ≥ p + 1):

Wpq(i, j) = min



min
i≤k<j

min
p≤r<q

{Wpr(i, k) + Wr+1,q(k + 1, j)},

Wpq(i + 1, j),

Wpq(i, j − 1),

Vpq(i, j),

min
i≤k<j

{Wpq(i, k) + W (k + 1, j)},

min
i≤k<j

{W (i, k) + Wpq(k + 1, j)},

(9)

Vpq(i, j) = min



min
i<k<j−1

min
p≤r<q

{Wpr(i + 1, k) + Wr+1,q(k + 1, j − 1)} + b,

min
i<i′<j′<j

{Wpq(i′, j′) + eh′(i, i′, j′, j)},

Vpq(i + 1, j − 1) + es(i, i + 1, j − 1, j),

min
i<i′<j′<j

{Vpq(i′, j′) + ebi(i, i′, j′, j)},

min
i<k<j−1

{Wpq(i + 1, k) + W (k + 1, j − 1)} + b,

min
i<k<j−1

{W (i + 1, k) + Wpq(k + 1, j − 1)} + b.

(10)
Vpq(i, j) in Case 3 differs from Vpp(i, j) in Case 2 in that sisi+1 · · · sj contains at
least two binding sites. The first case of minimization has the same meaning as
that of Wpq(i, j) except that (si, sj) is already known to form a base pair. Fig. 5
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Fig. 5 Recursion for Vpq(i, j).

shows the recursion for Vpq(i, j).
Finally, we evaluate the complexity of this algorithm. Obviously, complexity for

computing the equation (10) dominates the overall complexity of the algorithm.
Exact analysis of the second and forth formulas of the equation (10) reveals time
complexity of O(N2n4). However, in actual case, the loop size is bounded by
a constant, and thus the complexity can be reduced to O(N2n2). Computing
the first formula takes O(N3n3) time. Therefore, the overall time complexity is
evaluated as O(N3n3). The space complexity is O(N2n2).

3. Results

The DP for base pair energy model was tested by the data set consisting of six
antisense-target complexes, taken from literatures (see Table 2). The secondary
structures of antisense-target complexes in the data set are known, also each of
them is known to contain at least one binding site. The length of target sequences

Table 2 Results of DP algorithm for base pair energy, where n is the length of a target
sequence and N is the number of binding sites.

Antisense-Target n N Sensitivity Specificity F-measure CPU Time
(%) (%) (%) (sec)

Tar-Tar*6) 16 1 100.00 90.00 94.74 0.23

R1inv-R2inv12) 19 1 100.00 100.00 100.00 0.33

DIS-DIS10) 35 1 82.35 73.68 77.78 1.07

CopA-CopT14) 57 3 77.42 75.00 76.19 17.14

IncRNA54-RepZ3) 61 2 72.97 72.97 72.97 9.98

OxyS-fhlA14) 100 2 72.73 65.31 68.82 41.46

in the data set ranges from 16–100 bases. The maximum number of binding sites
is three (CopA-CopT).

We measured the prediction accuracy using sensitivity, specificity and F-
measure as defined below:

sensitivity

=
♯correctly predicted base pairs + ♯correctly predicted bases in the binding sites

♯observed base pairs + ♯observed bases in the binding sites
,

specificity

=
♯correctly predicted base pairs + ♯correctly predicted bases in the binding sites

♯predicted base pairs + ♯predicted bases in the binding sites
,

F-measure =
2 × sensitivity × specificity

sensitivity + specificity
.

Table 2 shows accuracy of the base pair energy model. As we can see from
the table, the DP algorithm can predict the secondary structure with binding
sites with at most 100.00% of sensitivity and specificity for the target sequence
R2inv, and at least 72.73% of sensitivity and 65.31% of specificity for the target
sequence fhlA despite use of only simple energy function. Fig. 6 depicts the
secondary structure predicted by the algorithm in dot-parenthesis representation
where the binding sites are indicated by the * symbol.

4. Conclusion

We proposed new dynamic programming algorithms for predicting RNA sec-
ondary structures with binding sites. Our approach is a novel method of RNA-
RNA interaction prediction from a different point of view (i.e., use of profile of
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Observed

5'-AAACCCCGAUAAUCUUCUUCAACUUUGGCGAGUACGAAAAGAUUACCGGGGCCCCAC-3'

   ...(((((.(((((((.******......*********))))))).)))))..****

Predicted

5'-AAACCCCGAUAAUCUUCUUCAACUUUGGCGAGUACGAAAAGAUUACCGGGGCCCCAC-3'

   ...((((((.((.(..)******)))((.*********((..)))))))))..****

(a) CopT

Observed

5'-AUGACCUUUUGCACCGCUUUGCGGUGCUUUCCUGGAAGAACAAAAUGUCAUAUACACCGAUGAGUGAUCUCGGACAACAAGGGUUGUUCGACAUCACUCG-3'

   (((((.(((((((((((...)))))))..*******.....)))).))))).........((((((((.((((....*********.)))).))))))))

Predicted

5'-AUGACCUUUUGCACCGCUUUGCGGUGCUUUCCUGGAAGAACAAAAUGUCAUAUACACCGAUGAGUGAUCUCGGACAACAAGGGUUGUUCGACAUCACUCG-3'

   (((((((((((.(..(..))((...))((*******).).)))))))))))((.(...)))((((((((..)(((((*********)).)))))))))).

(b) fhlA

Fig. 6 Prediction results for the base pair energy model.

intermolecular interaction), and achieved lower time complexity compared with
earlier methods. The performance of the algorithm for base pair energy was
demonstrated for several known RNA-RNA interaction data. To improve the
prediction accuracy, we are now trying to carry out prediction tests using the
algorithm for stacking energy. Our method could be applicable to RNA-protein
interaction if a profile of interacting protein is available, which is also left as our
future work.
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