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大規模ネットワーク構造の確率的グループモデル
に基づくリンク予測

蜷 川 陽†1 江 口 浩 二†1

近年，複雑ネットワークのモデリングは生物学や社会学などの分野において重要な
課題となっている．このような課題に対してこれまで多くの研究が行われてきたが，
その多くは対象となるネットワークに関する明示的な事前知識を要求するものであっ
た．一方，最近，明示的な事前知識を要求しない混合多項分布を用いた手法が提案さ
れ，社会ネットワークなどにおける頂点グループの検出に有効であることが示されて
いる．本稿ではグループ検出とは異なる課題として，複雑ネットワークにおけるリン
ク予測に焦点を当てる．この目的のもと，混合多項分布に事前分布を仮定したベイズ
混合多項分布を用いて，これをギブスサンプリング法によって推定する．代謝ネット
ワークと共著ネットワークのそれぞれから抽出した 50通りのデータセットで実験を行
い，提案手法によるリンク予測性能が従来手法と比較して有意に改善することを示す．

Link Prediction using Probabilistic Group Models
of Network Structure

AKIRA NINAGAWA †1 and KOJI EGUCHI†1

Modeling of complex networks is a crucial task such as in biology and social sciences.
A large number of researches have been conducted for such a problem; however, most of
them require explicit, specific prior knowledge on target networks. On the other hand, a few
recent works on multinomial mixture models presented that those models do not require
such explicit prior knowledge and turned out to be effective for the task of group detection
of vertices such as in social networks. This paper focuses on another task, link prediction
in such complex networks, using a Bayesian multinomial mixture model, which assumes
unobservable prior distributions over multinomial mixtures based on network structure and
are estimated using Bayesian inference via Gibbs sampling. We demonstrate that, using this
method, link prediction performance was significantly improved compared to conventional
methods through experiments using 50 data sets extracted from a metabolic network or a
co-authorship network.

1. Introduction

Recently, network analysis has become an increasingly important tool to exploit structural prop-

erties of a complex system in a wide variety of fields. In the fields of biology and pharmacology,

analysis of biological networks, such as metabolic networks and protein-protein interaction net-

works, has been actively investigated and considered as a promising approach for hypothesis gen-

eration.8) Social network analysis has also attracted considerable attention of sociologists, com-

puter scientists, and even the ordinary people.14),18) Complex networks in other fields have been

researched as well, such as networks of the Internet like the World Wide Web, and ecological

chain networks. Network analysis is not a new research subject in those fields; however, find-

ing and understanding common properties in such real complex networks is a trend in the last

decade.2),18) Very recently, Newman et al.12) investigated a simple multinomial mixture model for

exploratory analysis of networks. One of the advantages of their model is that prior knowledge

on target networks is mostly not required, while it is usually required in other conventional meth-

ods of network analysis. The task considered in their study was group detection in several social

networks and a dependency network of words.

Link mining has also been studied, on the other hand, in the research community of data min-

ing where addressing specific tasks are more emphasized rather than finding general properties in

networks. The various task of link mining includes such as group detection, link prediction, en-

tity classification, entity ranking, and subgraph discovery.5) This paper focuses on the task of link

prediction, which is the problem of predicting the existence of an unobserved link between two

entities, based on other observed links and sometimes based on attributes of the entities as well.

Link prediction is one of the crucial tasks, especially for biological networks. For instance, it is

known that there exist a number of missing links in an assembled pathway of metabolic networks,

and to predict such links is a promising task. Two types of features can be used to address the

task of link prediction: one is observed link structure of a targeted network and the other is object

attribute corresponding to each vertex.5) In the paper, we take the former approach that does not

necessarily depend on target networks.
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This paper is motivated by the question of how well the multinomial mixture modeling approach

based on observed link structure works for a practical task, link prediction in real-world network

data, not using prior knowledge as possible or not using object attributes. For this objective,

this paper investigates a Bayesian multinomial mixture model, which assumes unobservable prior

distributions over multinomial mixtures based on link structure and is estimated using Bayesian

inference, such as via Gibbs sampling. It is an extension of Newman et al.’s multinomial mixture

model12) that was mentioned previously. Newman et al.’s model achieves group detection (a.k.a.

network clustering or community discovery), which classifies each vertex in a network into un-

derlying groups in an unsupervised manner. Differently from other conventional methods, this

model achieves “soft clustering” of network vertices, such that the probability indicating mem-

bership of multiple groups is computed for each vertex, on the basis of observation of patterns

or behaviors of connections between vertices. Introducing unobservable prior distributions to the

multinomial mixtures allows robustly and accurately capturing the patterns of connections in the

network, as sometimes done in topic modeling.4) Using such discovered underlying groups, we

address the task of link prediction in complex networks. We demonstrate, through experiments

with a metabolic network and a co-authorship network, that our method is effective in terms of

prediction performance.

2. Related Work

A large number of researches have been conducted for modeling and analysis of complex net-

works, such as biological networks8) and social networks14). Most of the existing methods required

explicit, specific prior knowledge on targeted networks. However, very recently, Newman et al.12)

used a simple multinomial mixture model that does not require such explicit prior knowledge for

the task of group detection of entities in social networks and a dependency network of words.

Their model is based on the idea that each vertex’s adjacent vertices are represented as a mixture

of latent groups, where each latent group is represented as a multinomial distribution over vertices.

They demonstrated that the model was effective to detect groups for both “assortative” networks

in which vertices have most of their connections within the same group, and “disassortative” net-

works in which vertices have most of their connections outside their group, not requiring the prior

knowledge on whether a target network is assortative or disassortative. The model used in that

paper requires estimating every multinomial parameter from an observed adjacency matrix. Such

kind of multinomial mixture models are known, in general, to have risks of overfitting and not

modeling new entities.4)

Zhang et al.21),22) used a multinomial mixture model or a Gaussian mixture model with unob-

servable prior distributions for the task of group detection in coauthor networks. Using unob-

servable prior distributions is a good way to address the problems above. Their focus is rather

on representing or profiling of observed entities, assuming explicit prior knowledge that a target

network is assortative. That assumption is effective typically in coauthor networks; however, the

motivation is different from that of Newman et al.12) mentioned previously, in the sense of not

assuming explicit prior knowledge as possible.

While the task considered in those papers above12),21),22)was to detect groups of entities in net-

works, this paper is focused on the task of link prediction in unfamiliar, real-world network data.

Moreover, this paper is motivated by the question of how well multinomial mixture modeling

approach works based on observed network structure for the link prediction task. Link predic-

tion is the task of predicting the existence of an unobserved link between two entities.5) This task

is sometimes viewed as a binary classification: for any two potentially linked entities, predict

whether an indicator variable of this link is 1 or 0; other times the task is viewed as ranking ac-

cording to similarity or affinity between the two entities. The latter is more general because it can

also be interpreted as a binary classification when the ranking list is split into two parts, consider-

ing the upper and lower parts to be positive and negative, respectively. This paper evaluates link

prediction from the view of similarity ranking.

This paper is also related to statistical topic models4),7), which are based on the idea that each

document is represented as a mixture of latent topics, where each latent topic is a probability

distribution over words. Hofmann7) proposed Probabilistic Latent Semantic Indexing (PLSI) that

represents per-document multinomial topic distributions and per-topic multinomial word distri-

butions in order to capture underlying topics in a set of documents. Blei et al.4) extendeded it

and developed Latent Dirichlet Allocation (LDA), by introducing Dirichlet priors on the multi-

nomial distributions. Those established techniques can be applied to our research, since PLSI

corresponds to Newman et al.’s model12) that represents per-vertex group mixtures and per-group

multinomial vertex distribution to capture underlying group in a target network. LDA corresponds

to the Zhang’s network model22) and the model we use in this paper. However, applying those

models to link prediction in real-world networks has not been investigated, to our knowledge.
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(a) Newman’s multinomial mixture model (b) Bayesian multinomial mixture model

Fig. 1 Graphical model representations.

3. Methodology

3.1 A Generative Model

Before presenting our methodology, we introduce some technical terms and notations. We start

with a networkG that consists of a set of vertices or entitiesv = {vi} (i = 1, ..,N) and a set of

edges or linksE = {ei} (i = 1, ..,N), in which ei = {ei j } ( j = 1, ..,Mi) indicates a set of all edges

from vertexvi to others.E is essentially equivalent to the adjacency matrix of the network. We

assume that networkG is comprised of a set of underlying groupsg = {gk} (k = 1, ..,K), each of

which group is defined as a distribution over vertices. Letzi j to be the group assigned to vertexvi ’s

adjacent vertexvj . Therefore,zi j = gk represents that groupgk is assigned to vertexvj adjacent

from vertexvi . Moreover,Z = {zi} (i = 1, ..,N) can be defined wherezi = {zi j } ( j = 1, ..,Mi). We

then consider a probabilistic mixture model, where each vertex is represented as a mixture of the

groups.P(zi |θi) indicates per-vertex mixture distribution over groups; in other words, the proba-

bility of sampling a group that an arbitrary vertex adjacent from vertexvi belongs to. Moreover,

P(E|Z, ϕk) indicates per-group multinomial distribution over edges; in other words, the probability

of sampling an edge having a vertex that belongs to groupgk. Parametersθi andϕk are sampled

from Dirichlet distributions specified by given hyperparametersα andβ, respectively. We denote

θ andϕ as the entire sets{θi} (i = 1, ..,N) and{ϕk} (k = 1, ..,K), respectively. The probabilistic

mixture model above is a simple hierarchical Bayesian model3) in the sense that parametersθi

andϕk are sampled from the respective conjugate prior distributions. This model is referred to

as Bayesian multinomial mixture model, in this paper. The graphical model representation of the

Bayesian multinomial mixture model is shown in Fig. 1(b). In the graphical model representa-

tion, dependencies between variables or parameters are represented, where shaded circles indicate

observed variables while white circles latent variables or unknown parameters. Each plate rep-

resents repeated i.i.d. sampling and the number at a corner of the plate indicates the number of

times of the sampling.N indicates the number of vertices in a target network,K the number of

groups, andMi the number of vertices adjacent from vertexvi , that is, the degree of vertexvi . In

contrast, the graphical model representation of Newman’s multinomial mixture model12) is shown

in Fig. 1(a), where no prior distributions are introduced and thus robust, accurate estimation of

model parameters is hard to achieved.4)

The Bayesian multinomial mixture model above is a “generative” model of network, and the

process of generating a network is formalized as follows:

( 1 ) For allvi vertices sampleθi ∼ Dirichlet(α)

( 2 ) For allgk groups sampleϕk ∼ Dirichlet(β)

( 3 ) For each of theMi verticesvj adjacent from vertexvi :

( a ) Sample a groupzi j ∼ Multinomial(θi)

( b ) Sample a vertexvj ∼ Multinomial(ϕzi j )

where(vi , vj) corresponds to an edgeei j . Given hyperparametersα andβ, the full joint distribution

over all variables and parameters is as follows:

p(E,Z, θ,ϕ|α, β) = p(ϕ|β)
N∏

i=1

p(θi |α)P(zi |θi)P(ei |zi ,ϕ) (1)

This can be transformed into the following equation:

p(E,Z, θ,ϕ|α, β) =
N∏

i=1

Γ(Kα)
Γ(α)K

K∏
k=1

θ
α−1+ni·k
ik ×

K∏
k=1

Γ(Nβ)
Γ(β)N

N∏
j=1

ϕ
β−1+n· jk
k j (2)

whereni jk indicates the count that groupgk is assigned to vertexvi ’s adjacent vertexvj , and ‘·’
means a corresponding index is marginalized. In other words,n· jk =

∑
i ni jk andni·k =

∑
j ni jk . N

andK indicate the number of vertices and the number of underlying groups in a target network,

respectively.
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3.2 Estimation

Given the observed edgesE = {ei j }, the task of Bayesian inference is to compute the posterior

distribution over the latent group assignment variablez = {zi j }, the per-vertex distribution over

groupsθ = {θi} and per-group distribution over edgesϕ = {ϕk}. We use Gibbs sampling for the

task of Bayesian inference. Gibbs sampling inference uses the marginalized distribution overE

andZ, as follows6):

P(E,Z|α, β) =
N∏

i=1

Γ(Kα)
Γ(Kα + ni··)

K∏
k=1

Γ(α + ni·k)
Γ(α)

×
K∏

k=1

Γ(Nβ)
Γ(Nβ + n··k)

N∏
j=1

Γ(β + n· jk)

Γ(β)
(3)

Given the current state of all except one group assignment to an edgeei j , the conditional proba-

bility of zi j is given by:

P(zi j = k|Z¬i j ,E, α, β) =
(α + n¬i j

i·k )(β + n¬i j
· jk )(Nβ + n¬i j

··k )−1∑K
k′=1(α + n¬i j

i·k′ )(β + n¬i j
· jk′ )(Nβ + n¬i j

··k′ )
−1

(4)

wheren¬i j corresponds to variables or counts excludingei j andzi j . The conditional probability

specified by Equation (4) can be used to carry out the Gibbs sampling inference.

3.3 Link Prediction

We first estimate the unknown parameters of the Bayesian multinomial mixture model using

observed links in a target network; and then rank vertex pairs according to the (log-)likelihood of

generating each vertex pair from the estimated model. We refer to the set of vertex pairs to be

ranked as “test set”. The test-set log-likelihood is defined as follows:

logP(Etest|θ,ϕ) =
∑

ei j ∈Etest,i< j

log(P(ei j |θi ,ϕ)P(eji |θ j ,ϕ)) (5)

whereEtest = {ei j } is the entire set of edges in test set. The probabilityP(ei j |θi ,ϕ) can be obtained

by the distributionP(ei |θi ,ϕ), as follows, whereei is a set of all edges from vertexvi to others in

the test set.

P(ei |θi ,ϕ) =
M j∏
j=1

K∑
k=1

P(ei j |zi j = gk, ϕk)P(zi j = gk|θi) (6)

=

N∏
h=1

 K∑
k=1

P(eih|zih = gk, ϕk)P(zih = gk|θi)


nih·

(7)

wherenih· =
∑

k nihk andnihk indicates the count that groupgk is assigned to vertexvi ’s adjacent

vertexvh. θ andϕ are estimated via Gibbs sampling inference.θik andϕk j are obtained by the

following equations, according to Griffiths et al.6):

θik =
n¬i j

i·k + α∑K
k′=1 n¬i j

i·k′ + Kα
(8)

ϕk j =
n¬i j
· jk + β∑N

j′=1 n¬i j
· j′k + Nβ

(9)

4. Experiments

In this section, we evaluate through experiments the Bayesian multinomial mixture model de-

scribed in Section 3 on the task of link prediction in real-world network data, and compare it

with several existing methods based only on the network structure. We used network data of a

metabolic network or a co-authorship network for the experiments.

4.1 Existing Methods

First of all, we explain five existing methods from earlier works to compare with the proposed

method. Those methods are well accepted and well investigated.9),11) Each measure described be-

low indicates similarity or affinity between a pair of vertices, i.e., how similar a pair of entities is,

according to link structure of a target network. Ranking of vertex pairs is determined according to

the similarity. By evaluating the ranking, the performance of link prediction can be measured.

Note that all the measures are defined only using observed links. Hereafter, we denoteai as a

set of vertices adjacent from vertexvi .

( 1 ) Common Neighbors13):

Common= |ai ∩ aj | (10)

Common Neighbors is a measure based on the idea that a pair of vertices are likely to be

adjacent when these vertices share a number of common adjacent vertices.

( 2 ) Jaccard17):

Jaccard=
|ai ∩ aj |
|ai ∪ aj |

(11)

Jaccard’s coefficient is a standard measure of similarity in the field of information retrieval.

It is based on the idea that a pair of vertices each of which has smaller degree is more im-
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portant than others. The value ofJaccardincreases when each of a pair of vertices has a

few adjacent vertices and those adjacent vertices are common.

( 3 ) Adamic-Adar1):

Adamic-Adar=
∑

k∈ai∩a j

1
log |ak|

(12)

The Adamic-Adar measure assigns different weight to each common adjacent vertex. A

larger weight is assigned to a vertex of smaller degree.

( 4 ) Preferential Attachment13):

Pre f erential= |ai | · |aj | (13)

Preferential Attachment is different from the other above measures slightly. This measure

is based on a model for generating scale-free networks, in which a vertex with a larger

degree tends to connect to other vertices.

( 5 ) Katz10):

Katzµ =
∞∑
ℓ=1

µℓ |paths(ℓ)i j | (14)

Katzµ is defined as a measure on the basis of all the paths between a pair of vertices.

The value ofKatzµ is determined according to both the number of paths between a pair

of vertices and the length of each path. The notationpaths(ℓ)i j in Equation (14) indicates

the number of paths from vertexvi to vertexvj of which length isℓ. Therefore, shorter

length paths are more emphasized. For a large number ofℓ, the corresponding set of paths

exponentially grows. Therefore, we imposed the constraint that the paths of which length

satisfiesℓ ≤ 3 were only used, in the computation with Equation (14). We fixed the weight

parameterµ = 0.05, according to earlier works.9),11)

4.2 Experimental Settings

4.2.1 The Network Data

The network used in our experiments is a metabolic network and a co-authorship network.

Metabolic networks, in general, represent the process of converting the food that was taken from

outside the body into energies and chemical compounds necessary for living. In such metabolism,

various enzymes serve as catalysts in the chemical reaction. In the metabolic network, each ver-

tex represents an enzyme observed to act as a catalyst, and each edge represents that two en-

zymes were observed to act consecutively as catalysts. The data used in our experiments is the

(a) the metabolic network (b) the co-authorship network

Fig. 2 Structure of networks used in experiments.

Table 1 The data of a metabolic network and a co-authorship network used in experiments.

the metaboloc network the co-authorship network

The number of entities 668 379

The number of links 2782 914

Links/all entity pairs 0.0125 0.0126

Average shortest path length 5.711 6.042

Clustering coefficient18) 0.3367 0.7412

Average degree of entities 8.342 4.823

metabolic pathway of “S.Cerevisiae” that were constructed by Yamanishi et al.19) by extracting

from KEGG/PATHWAY database20). The co-authorship network is the data of scientists working

in the area of network science, and was used in 15). We only used the largest connected compo-

nent of this network data. The overview of the network data is shown in Fig 2(a) and (b). The

property of the data is shown in Table 1. The degree distributions of these two data are shonw in

Fig. 3. As shown in these figures, scale-free property is observed in these networks.2)

For each of these network data, we used 80% of all the vertex pairs as training data, 10% as

development data and the remainder as test data. We estimated the unknown parameters of the

mixture model using the training data, varying hyperparametersα andβ; and determined opti-
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(b) the co-authorship network

Fig. 3 The degree distribution of entities.

mal values of the hyperparameters so that log-likelihood of the development data are maximized.

After determining the hyperparameters, we merged the development data and the training data;

and using them, we estimated the unknown parameters of the mixture model, again. Therefore,

90% of the whole network was used for estimating the model, finally. When we split the training

data, development data and test data, we removed the vertices only appearing in the development

data or the test data but not appearing in the training data, since those isolated vertices are not

able to be predicted using the model estimated with the training data. We conducted experiments

on the task of link prediction using 50 sets of training data, development data and test data that

were randomly sampled from the entire set of vertices to ensure the fixed proportion mentioned

previously. Using each of the data sets, we compared the proposed method with the five existing

methods.

4.2.2 Parameter Estimation

It is necessary in our experiments to determine the following three parameters: hyperparame-

tersα andβ of Dirichlet prior distributions and the number of latent groupsK for the Bayesian

multinomial mixture model.

For the number of latent groupsK, we used 10 values in the range of10 to 100with an interval

of 10. For eachK value, we determined the two hyperparametersα andβ with each training data

set so that development-set log-likelihood is maximized; and then obtained the average value of

α, as well asβ, over those determined with 50 sets of training/development data.
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Fig. 4 Test-set log-likelihood according to the number of iterations.

With the determined hyperparameters, we estimated the unknown parameters of the mixture

model using both the development data and the training data; and obtained test-set log-likelihood

using Eq. (5). The test-set log-likelihood (or the development-set log-likelihood) means the nega-

tive logarithm of perplexity with respect to the test data (or the development data). The perplexity

is a well-accepted criterion to measure accuracy of statistical models, such as language models.16)

We also investigated how the test-set log-likelihood can be improved according to the number

of iterations. As shown in Fig. 4, the log-likelihood rises sharply by around 300 iterations, and

it gradually converges afterward. According to the result, it can be said that the log-likelihood at

around 1000 iterations is reasonable. We therefore fixed the number of iterations to be 1000 in

our experiments below.

4.3 Evaluation on Link Prediction Task

We used mean average precision (MAP) as an evaluation metric of the task of link prediction.

MAP is well accepted for evaluation of information retrieval task, and it is known to be easily

understandable and stable to evaluate ranking. MAP is defined as follows:

1
|data|

∑
d∈data

 1
|trued|

∑
r∈rankd

prec(r)

 (15)

wheredata denotes a set of test data (|data| = 50), trued indicates the entire set of “true” links in

test datad (i.e., all appeared links ind), andrankd indicates the entire set of links predicted by
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a method using the training data corresponding tod. The notationprec(r) indicates precision at

rank r in the ranking of predicted links, where precision is defined as the proportion of predicted

true links out ofr top-ranked predicted links. Here, the link prediction ranking is achieved ac-

cording to test-set log-likelihood in the case of our method, and according to a similarity measure

in the case of the other existing methods.

4.4 Experimental Results

We carried out experiments with our method and the five existing methods using 50 sets of

training data and test data and then calculated MAP. The result of each method is shown in Ta-

ble 2. MAP and another variation MP@10 are shown in this table. We computed MAP values

by imposing the constraint that the link prediction ranking is cut off at the rank of 1000. MP@10

indicates the mean of precision at the rank of 10.

According to Table 2, the link prediction performance of our method is more than 17 points

higher than that of the other five methods, in terms of MAP, in the case of the metabolic network.

Its percentage improvement (i.e., the ratio of degree of improvement to baseline performance)

was 498% higher, compared with Katz measure as the baseline. The improvement obtained by

our method was statistically significant over either Common Neighbors, Jaccard, Adamic-Adar,

Preferential Attachment, or Katz, wherep < 0.01 with the two-sided Wilcoxon signed-rank test.

According to the other evaluation metrics, our methods remarkably outperformed the baselines,

as well.

As for the case of the co-authorship network, the proposed method also works well; however,

its link prediction performance was less than that of CommonNeighbors and Katz. As you can

see in Table 1, the clustering coefficient18) of the co-authorship network was much larger than that

of the metabolic network. This means that the edge connectivity in the co-authorship network is

dense. In such a case, methods based on local structure like CommonNeighbors or Katz seem to

work quite well.

We demonstrate the Recall-Precision curves of our proposed method under the condition with

the optimal topic numbers to compare with the five existing methods in Fig. 5(a) for the metabolic

network and Fig. 5(b) for the co-authorship network.

5. Conclusions

In this paper, we proposed a method to predict unobserved links from observed link informa-

Table 2 Evaluation results on link prediction task in the metabolic network.

MAP (%) MP@10 (%)

CommonNeighbors 2.884 9.273

PreferentialAttachment 0.1488 2.545

Adamic/Adar 0.03015 0.7273

Jaccard 0.002364 0.1818

Katz 3.587 9.636

proposed(K = 80) 21.44 43.40

proposed(K = 90) 21.25 35.60

proposed(K = 100) 22.05 42.40

Table 3 Evaluation results on link prediction task in the co-authorship network.

MAP (%) MP@10 (%)

CommonNeighbors 30.41 92.73

PreferentialAttachment 0.2843 2.727

Adamic/Adar 0.08760 0.5455

Jaccard 0.5067 8.545

Katz 25.68 84.73

proposed(K = 40) 12.77 47.82

proposed(K = 50) 13.55 48.73

proposed(K = 60) 12.88 49.09

tion, by modeling underlying groups in the network only on the basis of patterns or behaviors

of connections in the network. The model is a simple hierarchical Bayesian model, which as-

sumes unobservable prior distributions over Newman et al.’s multinomial mixture model12) and is

estimated using Bayesian inference via Gibbs sampling.

Conventional structure-based link prediction methods, such as Common Neighbors, Jaccard,

Adamic-Adar, Preferential Attachment and Katz measures, are often based on local structure (for

instance, based on counts of vertices commonly adjacent from a pair of vertices in the network).

On the contrary, multinomial mixture models of network can capture patterns of vertex connec-

tivity from observation in the entire network. We demonstrated, through our experiments using

a metabolic network or a co-authorship network, that our method works well in the task of link

prediction, compared with five conventional methods based on link structure. Especially for the

metabolic network, the improvement was statistically significant than all the five conventional

methods. As future works, we plan to perform experiments with larger networks.
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Fig. 5 Recall-precision curves of the proposed method and five existing methods.
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