IPSJ SIG Technical Report

oooobbooooobobbuooooon
oooobbon

O O ol o o o oft

oooooooooooooooooooooobooooooooooooooo
goboboooooobooooobooUoooOoOoOoOooboOoOooObOOoUOoobOOoOoOoDOoOo
g0o0o0oooooOo0oO0O0o0oO0000ooooooOoOOobOOoO00O0ooooooOoObobD
gooooooOoO0oooOoOoO0O0oOoOo0oOooOoOO0O0OOO0O0O0COcOO0OO0OOoOO00
gdooooooooooooboboooooooooooooOobobboOoOoOoooo
gooooooooooOoooOoooooOooooooooooODOOOOOboOoooo
gooooooooooOoOoOoOoOObO0O000oooooooooooboboobo0ooo
goooooooooooooOoOoOoOoOooobooooooOoOObbOOoOoOoOoOooa
oo0ooo0ooOoooooO0oooooooooooso0oooooooooooonon
gooooooooOOODOODOOO0OO0O00000000000000000000O0

Link Prediction using Probabilistic Group Models
of Network Structure

AKIRA NINAGAWA 1 and KoJi EGucHI™®

Modeling of complex networks is a crucial task such as in biology and social sciences.
A large number of researches have been conducted for such a problem; however, most of
them require explicit, specific prior knowledge on target networks. On the other hand, a few
recent works on multinomial mixture models presented that those models do not require
such explicit prior knowledge and turned out to be effective for the task of group detection
of vertices such as in social networks. This paper focuses on another task, link prediction
in such complex networks, using a Bayesian multinomial mixture model, which assumes
unobservable prior distributions over multinomial mixtures based on network structure and
are estimated using Bayesian inference via Gibbs sampling. We demonstrate that, using this
method, link prediction performance was significantly improved compared to conventional
methods through experiments using 50 data sets extracted from a metabolic network or a
co-authorship network.

Vol.2009-BIO-17 No.9
2009/5/25

1. Introduction

Recently, network analysis has become an increasingly important tool to exploit structural prop-
erties of a complex system in a wide variety of fields. In the fields of biology and pharmacology,
analysis of biological networks, such as metabolic networks and protein-protein interaction net-
works, has been actively investigated and considered as a promising approach for hypothesis gen-
eration® Social network analysis has also attracted considerable attention of sociologists, com-
puter scientists, and even the ordinary pedfii&)) Complex networks in other fields have been
researched as well, such as networks of the Internet like the World Wide Web, and ecological
chain networks. Network analysis is not a hew research subject in those fields; however, find-
ing and understanding common properties in such real complex networks is a trend in the last
decade?® Very recently, Newman et P investigated a simple multinomial mixture model for
exploratory analysis of networks. One of the advantages of their model is that prior knowledge
on target networks is mostly not required, while it is usually required in other conventional meth-
ods of network analysis. The task considered in their study was group detection in several social
networks and a dependency network of words.

Link mining has also been studied, on the other hand, in the research community of data min-
ing where addressing specific tasks are more emphasized rather than finding general properties in
networks. The various task of link mining includes such as group detection, link prediction, en-
tity classification, entity ranking, and subgraph discoveilhis paper focuses on the task of link
prediction, which is the problem of predicting the existence of an unobserved link between two
entities, based on other observed links and sometimes based on attributes of the entities as well.
Link prediction is one of the crucial tasks, especially for biological networks. For instance, it is
known that there exist a number of missing links in an assembled pathway of metabolic networks,
and to predict such links is a promising task. Two types of features can be used to address the
task of link prediction: one is observed link structure of a targeted network and the other is object
attribute corresponding to each verfn the paper, we take the former approach that does not
necessarily depend on target networks.

11000000000000000D0000
Department of Computer Science and Systems Engineering, Kobe University

(© 2009 Information Processing Society of Japan



Vol.2009-BIO-17 No.9
2009/5/25

IPSJ SIG Technical Report

This paper is motivated by the question of how well the multinomial mixture modeling approach kind of multinomial mixture models are known, in general, to have risks of overfitting and not
based on observed link structure works for a practical task, link prediction in real-world network modeling new entitie®.
data, not using prior knowledge as possible or not using object attributes. For this objective, Zhang et af*?? used a multinomial mixture model or a Gaussian mixture model with unob-
this paper investigates a Bayesian multinomial mixture model, which assumes unobservable priogervable prior distributions for the task of group detection in coauthor networks. Using unob-
distributions over multinomial mixtures based on link structure and is estimated using Bayesianservable prior distributions is a good way to address the problems above. Their focus is rather
inference, such as via Gibbs sampling. It is an extension of Newman et al.'s multinomial mixture on representing or profiling of observed entities, assuming explicit prior knowledge that a target
model? that was mentioned previously. Newman et al.'s model achieves group detection (a.k.anetwork is assortative. That assumption is effective typically in coauthor networks; however, the
network clustering or community discovery), which classifies each vertex in a network into un- motivation is different from that of Newman et . mentioned previously, in the sense of not
derlying groups in an unsupervised manner. Differently from other conventional methods, thisassuming explicit prior knowledge as possible.
model achieves “soft clustering” of network vertices, such that the probability indicating mem-  While the task considered in those papers ak®%&-??was to detect groups of entities in net-
bership of multiple groups is computed for each vertex, on the basis of observation of patternavorks, this paper is focused on the task of link prediction in unfamiliar, real-world network data.
or behaviors of connections between vertices. Introducing unobservable prior distributions to theMloreover, this paper is motivated by the question of how well multinomial mixture modeling
multinomial mixtures allows robustly and accurately capturing the patterns of connections in theapproach works based on observed network structure for the link prediction task. Link predic-
network, as sometimes done in topic modefthising such discovered underlying groups, we  tion is the task of predicting the existence of an unobserved link between two eHtiias. task
address the task of link prediction in complex networks. We demonstrate, through experimentss sometimes viewed as a binary classification: for any two potentially linked entities, predict
with a metabolic network and a co-authorship network, that our method is effective in terms of whether an indicator variable of this link is 1 or O; other times the task is viewed as ranking ac-
prediction performance. cording to similarity or affinity between the two entities. The latter is more general because it can
also be interpreted as a binary classification when the ranking list is split into two parts, consider-
ing the upper and lower parts to be positive and negative, respectively. This paper evaluates link

A large number of researches have been conducted for modeling and analysis of complex neprediction from the view of similarity ranking.
works, such as biological netwofksind social network®). Most of the existing methods required This paper is also related to statistical topic motiélswhich are based on the idea that each
explicit, specific prior knowledge on targeted networks. However, very recently, Newmatfet al. document is represented as a mixture of latent topics, where each latent topic is a probability
used a simple multinomial mixture model that does not require such explicit prior knowledge for distribution over words. Hofmarfhproposed Probabilistic Latent Semantic Indexing (PLSI) that
the task of group detection of entities in social networks and a dependency network of wordsrepresents per-document multinomial topic distributions and per-topic multinomial word distri-
Their model is based on the idea that each vertex’s adjacent vertices are represented as a mixtuetions in order to capture underlying topics in a set of documents. Blei*teatendeded it
of latent groups, where each latent group is represented as a multinomial distribution over verticesand developed Latent Dirichlet Allocation (LDA), by introducing Dirichlet priors on the multi-
They demonstrated that the model was effective to detect groups for both “assortative” networksiomial distributions. Those established techniques can be applied to our research, since PLSI
in which vertices have most of their connections within the same group, and “disassortative” net-corresponds to Newman et al.'s modethat represents per-vertex group mixtures and per-group

2. Related Work

works in which vertices have most of their connections outside their group, not requiring the prior multinomial vertex distribution to capture underlying group in a target network. LDA corresponds
knowledge on whether a target network is assortative or disassortative. The model used in thab the Zhang’s network modil and the model we use in this paper. However, applying those
paper requires estimating every multinomial parameter from an observed adjacency matrix. Suchmodels to link prediction in real-world networks has not been investigated, to our knowledge.
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and ¢y are sampled from the respective conjugate prior distributions. This model is referred to
as Bayesian multinomial mixture model, in this paper. The graphical model representation of the

N N Bayesian multinomial mixture model is shown in Fig. 1(b). In the graphical model representa-
z

tion, dependencies between variables or parameters are represented, where shaded circles indicate

M; observed variables while white circles latent variables or unknown parameters. Each plate rep-
resents repeated i.i.d. sampling and the number at a corner of the plate indicates the number of
K é( times of the samplingN indicates the number of vertices in a target netwd&khe number of

6

(DG

(a) Newman’s multinomial mixture model (b) Bayesian multinomial mixture model in Fig. 1(a), where no prior distributions are introduced and thus robust, accurate estimation of
Fig.1 Graphical model representations. model parameters is hard to ach|e\?éd

The Bayesian multinomial mixture model above is a “generative” model of network, and the

v groups, andVi; the number of vertices adjacent from vertgxthat is, the degree of vertax In

contrast, the graphical model representation of Newman’s multinomial mixture tHiadehown

process of generating a network is formalized as follows:
3. Methodology

(1) Forallv; vertices samplé;, ~ Dirichlet(e)

3.1 A Generative Model (2) For all gk groups sampley ~ Dirichlet(B)
Before presenting our methodology, we introduce some technical terms and notations. We stat3)  For each of théVi; verticesv; adjacent from vertex;:
with a networkG that consists of a set of vertices or entities: {v;} (i = 1,..,N) and a set of (a) Sample a groug; ~ Multinomial(6;)
edges or link€ = {g} (i = 1,..,N), in whichg = {g;} (j = 1,.., M;) indicates a set of all edges (b) Sample a vertex; ~ Multinomial(¢,;)
from vertexy; to others.E is essentially equivalent to the adjacency matrix of the network. We where(v;, v;) corresponds to an edgg. Given hyperparametessandg, the full joint distribution
assume that netwoi® is comprised of a set of underlying groups: {g«} (k = 1, .., K), each of over all variables and parameters is as follows:
which group is defined as a distribution over vertices.4,;db be the group assigned to verte’s N
adjacent vertex;. Thereforez; = g« represents that groug is assigned to vertex; adjacent p(E,Z, 0, ¢la, B) = p(o|B) l_[ p(6ila)P(z16,)P(elz, §) (@)
from vertexv;. Moreover,Z = {z} (i = 1,..,N) can be defined whe® = {z;} (j = 1,.., M;). We =1

then consider a probabilistic mixture model, where each vertex is represented as a mixture of th&his can be transformed into the following equation:
groups.P(z|6) indicates per-vertex mixture distribution over groups; in other words, the proba-

N K K N
bility of sampling a group that an arbitrary vertex adjacent from vevtdelongs to. Moreover, P(E.Z,0, ¢la.B) = 1_[ l;_((z)i) 1_[ gt 1_[ 11:((;‘5[? l_[ ¢fj_l+n’jk )
P(E|Z, ¢x) indicates per-group multinomial distribution over edges; in other words, the probability =t k=t k=t =
of sampling an edge having a vertex that belongs to grpufParameters; and¢y are sampled wheren;j indicates the count that group is assigned to vertex’s adjacent vertex;, and *’
from Dirichlet distributions specified by given hyperparameteendp, respectively. We denote means a corresponding index is marginalized. In other warglss 3 i andnix = X ni. N
0 and¢ as the entire set®,} (i = 1,..,N) and{¢y} (k = 1,..,K), respectively. The probabilistic andK indicate the number of vertices and the number of underlying groups in a target network,

mixture model above is a simple hierarchical Bayesian nibitelthe sense that parametets respectively.
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3.2 Estimation
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whereny. = Y nink and iy indicates the count that groug is assigned to vertex’s adjacent

Given the observed edgé&s= {g;}, the task of Bayesian inference is to compute the posterior vertexv,. 8 and¢ are estimated via Gibbs sampling inferenég.and¢,; are obtained by the

distribution over the latent group assignment variable {z;}, the per-vertex distribution over
groupsO = {6;} and per-group distribution over edg@s= {¢x}. We use Gibbs sampling for the
task of Bayesian inference. Gibbs sampling inference uses the marginalized distributidh over

andz, as follow$):

N TKe) Te+n) 17 TNB) T +ng)
PE Zla.p) = 1_1[ T(Ka + 1) H T@ D T(NB + ny) H () ®)

Given the current state of all except one group assignment to anegedtfee conditional proba-

bility of z; is given by:

(@ + )8+ )(NB + )

P(zj = kZ™,E,a.B) =
J Sa(a + (B + M) (NS + )

(4)

wheren™'l corresponds to variables or counts excludi&gandz;. The conditional probability
specified by Equation (4) can be used to carry out the Gibbs sampling inference.
3.3 Link Prediction

following equations, according to Griffiths et®i.

n,) +a

O = —— K ——— (8)
kT Ka
ny +p8
bi= = 9)
2y N+ NB

4. Experiments

In this section, we evaluate through experiments the Bayesian multinomial mixture model de-
scribed in Section 3 on the task of link prediction in real-world network data, and compare it
with several existing methods based only on the network structure. We used network data of a
metabolic network or a co-authorship network for the experiments.

4.1 Existing Methods

First of all, we explain five existing methods from earlier works to compare with the proposed
method. Those methods are well accepted and well investi§dfé&Each measure described be-

We first estimate the unknown parameters of the Bayesian multinomial mixture model usinglow indicates similarity or affinity between a pair of vertices, i.e., how similar a pair of entities is,

observed links in a target network; and then rank vertex pairs according to the (log-)likelihood of according to link structure of a target network. Ranking of vertex pairs is determined according to

generating each vertex pair from the estimated model. We refer to the set of vertex pairs to be¢he similarity. By evaluating the ranking, the performance of link prediction can be measured.

ranked as “test set”. The test-set log-likelihood is defined as follows:
log P(Ewesd®. @) = > log(P(eyl6i. &)P(e;16;. 9)) (5)
&j<Eresti<]
whereE = {g;} is the entire set of edges in test set. The probati{ty;|6;, ¢) can be obtained
by the distributionP(e 6;, ¢), as follows, where; is a set of all edges from vertexto others in
the test set.

Mj Kk
Pelo, &) = [ | > Plejla; = g #P@; = 9d6) ©
j=1 k=1
JN K Nih.
= {Z P(enlzn = gk, $x)P(zn = gk|9i)} 7
h=1 \ k=1

Note that all the measures are defined only using observed links. Hereafter, we ajeawte
set of vertices adjacent from vertex
(1) Common Neighbor$):
Common= |a N a] (10)

Common Neighbors is a measure based on the idea that a pair of vertices are likely to be
adjacent when these vertices share a number of common adjacent vertices.

(2) Jaccard:

la N ayl

lay U &yl

Jaccard’s coefficient is a standard measure of similarity in the field of information retrieval.

Jaccard=

(11)

It is based on the idea that a pair of vertices each of which has smaller degree is more im-
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portant than others. The value #éccardincreases when each of a pair of vertices has a
few adjacent vertices and those adjacent vertices are common.
(3) Adamic-AdaP:
AdamicAdar = Z
keajna;
The Adamic-Adar measure assigns different weight to each common adjacent vertex. A
larger weight is assigned to a vertex of smaller degree.
(4) Preferential Attachmet?:
Preferential= |a] - |a] (13)

1

log lay| (12)

Preferential Attachment is different from the other above measures slightly. This measure

is based on a model for generating scale-free networks, in which a vertex with a larger
degree tends to connect to other vertices.

(5) Katz: (a) the metabolic network (b) the co-authorship network
oo Fig.2 Structure of networks used in experiments.
Katz, = Zuf|path$j’)| (14)
=1
Kat;, is defined as a measure on the basis of all the paths between a pair of vertices. Table 1 The data of a metabolic network and a co-authorship network used in experiments.
. . . . the metaboloc network the co-authorship network
The value ofKatz, is determined according to both the humber of paths between a pair The number of entities 668 379
of vertices and the length of each path. The notatiath#f) in Equation (14) indicates The number of links 2782 914
the number of paths from vertex to vertexv; of which length is¢. Therefore, shorter Links/all entity pairs 0.0125 0.0126
| h h hasi | . f h Average shortest path length 5.711 6.042
ength paths are more emphasized. For a large numbkitioé corresponding set of paths Clustering coefficiert®) 0.3367 07412
exponentially grows. Therefore, we imposed the constraint that the paths of which length Average degree of entities 8.342 4.823
satisfies < 3 were only used, in the computation with Equation (14). We fixed the weight
parametep = 0.05, according to earlier work®:*%) metabolic pathway of “S.Cerevisiae” that were constructed by Yamanishi‘8tkal.extracting
4.2 Experimental Settings from KEGG/PATHWAY databas®. The co-authorship network is the data of scientists working
4.2.1 The Network Data in the area of network science, and was used in 15). We only used the largest connected compo-

The network used in our experiments is a metabolic network and a co-authorship network.nent of this network data. The overview of the network data is shown in Fig 2(a) and (b). The
Metabolic networks, in general, represent the process of converting the food that was taken fronproperty of the data is shown in Table 1. The degree distributions of these two data are shonw in
outside the body into energies and chemical compounds necessary for living. In such metabolisnfig. 3. As shown in these figures, scale-free property is observed in these netvorks.
various enzymes serve as catalysts in the chemical reaction. In the metabolic network, each ver- For each of these network data, we used 80% of all the vertex pairs as training data, 10% as
tex represents an enzyme observed to act as a catalyst, and each edge represents that two @evelopment data and the remainder as test data. We estimated the unknown parameters of the
zymes were observed to act consecutively as catalysts. The data used in our experiments is tin@ixture model using the training data, varying hyperparametesad8; and determined opti-
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Fig.3 The degree distribution of entities. Fig.4 Test-set log-likelihood according to the number of iterations.

mal values of the hyperparameters so that log-likelihood of the development data are maximized. With the determined hyperparameters, we estimated the unknown parameters of the mixture
After determining the hyperparameters, we merged the development data and the training datanodel using both the development data and the training data; and obtained test-set log-likelihood
and using them, we estimated the unknown parameters of the mixture model, again. Thereforeysing Eq. (5). The test-set log-likelihood (or the development-set log-likelihood) means the nega-
90% of the whole network was used for estimating the model, finally. When we split the training tive logarithm of perplexity with respect to the test data (or the development data). The perplexity
data, development data and test data, we removed the vertices only appearing in the developmeata well-accepted criterion to measure accuracy of statistical models, such as languageé%odels.
data or the test data but not appearing in the training data, since those isolated vertices are notWe also investigated how the test-set log-likelihood can be improved according to the number
able to be predicted using the model estimated with the training data. We conducted experimentsf iterations. As shown in Fig. 4, the log-likelihood rises sharply by around 300 iterations, and
on the task of link prediction using 50 sets of training data, development data and test data that gradually converges afterward. According to the result, it can be said that the log-likelihood at
were randomly sampled from the entire set of vertices to ensure the fixed proportion mentionedaround 1000 iterations is reasonable. We therefore fixed the number of iterations to be 1000 in
previously. Using each of the data sets, we compared the proposed method with the five existingur experiments below.

methods. 4.3 Evaluation on Link Prediction Task
4.2.2 Parameter Estimation We used mean average precision (MAP) as an evaluation metric of the task of link prediction.
It is necessary in our experiments to determine the following three parameters: hyperparameMAP is well accepted for evaluation of information retrieval task, and it is known to be easily
tersa andg of Dirichlet prior distributions and the number of latent grokp$or the Bayesian understandable and stable to evaluate ranking. MAP is defined as follows:
multinomial mixture model.
For the number of latent group§ we used 10 values in the rangeldfto 100with an interval |dita| Z |tru1ed| Z predr) (15)
of 10. For eactK value, we determined the two hyperparametessids with each training data dedata rerankg

set so that development-set log-likelihood is maximized; and then obtained the average value ofrtheredata denotes a set of test datddta] = 50), trueq indicates the entire set of “true” links in
a, as well ag, over those determined with 50 sets of training/development data. test datad (i.e., all appeared links id), andrank 4 indicates the entire set of links predicted by
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a method using the training data corresponding.tdhe notationpredr) indicates precision at Table 2. Evaluation results on link prediction task in the metabolic network.
. . . . L ' . . MAP (%) MP@10 (%)
rankr in the ranking of predicted links, where precision is defined as the proportion of predicted CommonNeighbors > 884 9273
true links out ofr top-ranked predicted links. Here, the link prediction ranking is achieved ac- PreferentialAttachment 0.1488 2.545
cording to test-set log-likelihood in the case of our method, and according to a similarity measure Adamic/Adar 0.03015 0.7273
X Lo Jaccard 0.002364 0.1818
in the case of the other existing methods. e 3587 9635
4.4 Experimental Results proposedf = 80) 21.44 43.40
We carried out experiments with our method and the five existing methods using 50 sets of proposed = 90) 21.25 35.60
o . . proposed = 100 22.05 42.40
training data and test data and then calculated MAP. The result of each method is shown in Ta-
ble 2. MAP and another variation MP@10 are shown in this table. We computed MAP values
by imposing the constraint that the link prediction ranking is cut off at the rank of 1000. MP@10 Table 3 Evaluation results on link prediction task in the co-authorship network.
- - MAP (%) MP@10 (%)
indicates the mean of precision at the rank of 10. CommonNeighbors 041 9273
According to Table 2, the link prediction performance of our method is more than 17 points PreferentialAttachment 0.2843 2.727
higher than that of the other five methods, in terms of MAP, in the case of the metabolic network. Adamic/Adar 0.08760 0.5455
Jaccard 0.5067 8.545
Its percentage improvement (i.e., the ratio of degree of improvement to baseline performance) ol 55 68 8473
was 498% higher, compared with Katz measure as the baseline. The improvement obtained by proposed{ = 40) 12.77 47.82
our method was statistically significant over either Common Neighbors, Jaccard, Adamic-Adar, pmposei = Zg 1222 ig';z
. . . . . propose = : .
Preferential Attachment, or Katz, whepe< 0.01 with the two-sided Wilcoxon signed-rank test.
According to the other evaluation metrics, our methods remarkably outperformed the baselines,
as well. tion, by modeling underlying groups in the network only on the basis of patterns or behaviors

As for the case of the co-authorship network, the proposed method also works well; howeverpf connections in the network. The model is a simple hierarchical Bayesian model, which as-
its link prediction performance was less than that of CommonNeighbors and Katz. As you cansumes unobservable prior distributions over Newman et al.’s multinomial mixture Acated is
see in Table 1, the clustering coeffici¥hbf the co-authorship network was much larger than that  estimated using Bayesian inference via Gibbs sampling.
of the metabolic network. This means that the edge connectivity in the co-authorship network is Conventional structure-based link prediction methods, such as Common Neighbors, Jaccard,
dense. In such a case, methods based on local structure like CommonNeighbors or Katz seem Amlamic-Adar, Preferential Attachment and Katz measures, are often based on local structure (for
work quite well. instance, based on counts of vertices commonly adjacent from a pair of vertices in the network).

We demonstrate the Recall-Precision curves of our proposed method under the condition wittOn the contrary, multinomial mixture models of network can capture patterns of vertex connec-
the optimal topic numbers to compare with the five existing methods in Fig. 5(a) for the metabolictivity from observation in the entire network. We demonstrated, through our experiments using
network and Fig. 5(b) for the co-authorship network. a metabolic network or a co-authorship network, that our method works well in the task of link

. prediction, compared with five conventional methods based on link structure. Especially for the

5. Conclusions metabolic network, the improvement was statistically significant than all the five conventional

In this paper, we proposed a method to predict unobserved links from observed link informa-methods. As future works, we plan to perform experiments with larger networks.

7 (© 2009 Information Processing Society of Japan
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