## 頂点容量制約付き有向全域木 パッキング問題に対する近似解法

本論文では，頂点容量制約付き有向全域木パッキング問題に対する近似解法を提案 する。この問題では入力として，有向グラフ，ルート頂点，頂点容量，辺の始点側と終点側にそれぞれ消費量が与えられる。目的は，ルート頂点に流入する有向全域木のパッ キング回数を最大化することである。ただし，有向全域木の各頂点に対する消費量の合計は，与えられた頂点容量を超えてはいけない。この問題はNP 困難であることが知られている。
提案手法ではこの問題を，（1）パッキングに用いる木の候補を探す，（2）それぞれの木に対してパッキング回数を決定する，という 2 つの段階に分けて考えている。前者 に対しては，整数計画問題として定式化した後に，その線形緩和問題に対して列生成法 を適用する。後者に対しては，線形緩和問題の解を修正したものに貪欲アルゴリズム を適用することを考案した。
既存研究で用いられているグラフと，ランダムに生成したグラフに対して計算実験 を行い，提案したアルゴリズムの効果について比較検討を行った。その結果，既存研究 より良い結果が得られ，提案アルゴリズムがうまく動作していることを碓認した。

## A Heuristic Algorithm for the Node Ccapacitated In－tree Packing Problem

Yuma Tanaka，${ }^{\dagger 1}$ Mihiro Sasaki ${ }^{\dagger}{ }^{2}$ and Mutsunori Yagiura ${ }^{\dagger 1}$

In this paper，we deal with the node capacitated in－tree packing problem． The input consists of a directed graph，a root node，a node capacity function and edge consumption functions for heads and tails．The problem consists of finding the maximum number of rooted in－trees such that the total consump－ tion of the in－trees at each node does not exceed the capacity of the node．This problem is known to be NP－hard．
We propose a two－phase heuristic algorithm for this problem．In the first phase，it generates candidate in－trees to be packed．The node capacitated
in－tree packing problem can be formulated as an IP（integer programming） problem，and the proposed algorithm employs the delayed column generation method for the LP（linear programming）－relaxation problem of the IP to gener－ ate promising candidate in－trees．In the second phase，the algorithm computes ate promising candidate in－trees．In the second phase，the algorithm computes
the packing number of each in－tree．Our algorithm solves this second－phase the packing number of each in－tree．Our algorithm solves this second－phase
problem by first modifying feasible solutions of the LP－relaxation problem and problem by first modifying feasible solutions of
then improving them with a greedy algorithm．
We conducted computational experiments on graphs used in related papers and on randomly generated graphs．The results indicate that our algorithm has a better performance than other existing methods．

## 1．Introduction

In this paper，we consider the node capacitated in－tree packing problem．The input consists of a directed graph，a root node，a node capacity function and edge consumption functions for heads and tails．The problem consists of finding the maximum number of rooted in－trees such that the total consumption of the in－trees at each node does not exceed the capacity of the node．
Let $G=(V, E)$ be a directed graph，$r \in V$ be a root node and $\mathbb{R}_{+}$be the set of non－ negative real numbers．In addition，let $t: E \rightarrow \mathbb{R}_{+}$and $h: E \rightarrow \mathbb{R}_{+}$be tail and head consumption functions on directed edges，respectively，and $b_{i} \in \mathbb{R}_{+}$be the capacity of a node $i \in V$ ．For convenience，we define $T^{*}$ as the set of all in－trees rooted at the given root $r \in V$ in the graph $G$ ．Let $\delta_{j}^{+}(i)$（resp．，$\left.\delta_{j}^{-}(i)\right)$ be the set of edges in an in－tree $j \in T^{*}$ leaving（resp．，entering）a node $i \in V$ ．The consumption $a_{i j}$ of an in－tree $j \in T^{*}$ at a node $i \in V$ is defined as

$$
\begin{equation*}
a_{i j}=\sum_{e \in \delta_{j}^{+}(i)} t(e)+\sum_{e \in \delta_{j}^{-}(i)} h(e) . \tag{1}
\end{equation*}
$$

We call the first term of the above equation（1）tail consumption，and the second term head consumption．The node capacitated in－tree packing problem is to find a subset $T \subseteq T^{*}$ of in－trees and the packing number $x_{j}$ of each in－tree $j \in T$ subject to the node

[^0]capacity restriction
\[

$$
\begin{equation*}
\sum_{j \in T} a_{i j} x_{j} \leq b_{i}, \quad \forall i \in V \tag{2}
\end{equation*}
$$

\]

so as to maximize the total number of packed in－trees $\sum_{j \in T} x_{j}$ ．
This problem is known to be NP－hard ${ }^{9)}$ ．Furthermore，it is still NP－hard even if instances are restricted to complete graphs embedded in a space with tail consumptions depending only on the distance between end nodes．

This problem is studied in the context of sensor networks．Recently，several kinds of graph packing problems are studied in the context of ad hoc wireless networks and sensor networks．These problems are called network lifetime problems．The important problems included among this category are the node capacitated spanning subgraph packing problems ${ }^{2), 8), 12)}$ ．For sensor networks，for example，a spanning subgraph corre－ sponds to a communication network topology for collecting information from all nodes （sensors）to the root（base station）or for sending information from the root to all other nodes．Sending a message along an edge consumes energy at end nodes，usually depend－ ing on the distance between them．The use of energy for each sensor is severely limited because the sensors use batteries．It is therefore important to design the topologies for communication in order to save energy consumption and make sensors operate as long as possible．For this problem，Heinzelman et al．${ }^{8)}$ proposed an algorithm，called LEACH－ C（low energy adaptive clustering hierarchy centralized），that uses arborescences with limited height for communication topologies．For more energy effcient communication networks，a multiround topology construction problem was formulated as an integer programming problem，and a heuristic solution method was proposed in 12）．In the formulation of 2 ），head consumptions are not considered，and the consumption at each node is the maximum tail consumption among the edges leaving the node．There are variations of the problem with respect to additional conditions on the spanning sub－ graph such as strong connectivity，symmetric connectivity，and directed out－tree rooted at a given node．Calinescu et al．${ }^{2)}$ discussed the hardness of the problem and proposed several approximation algorithms．

These network lifetime problems are similar to the well－known edge－disjoint spanning arborescence packing problem：Given a directed graph $G=(V, E)$ and a root $r \in V$ ，
find the maximum number of edge－disjoint spanning arborescences rooted at $r$ ．The edge－disjoint spanning arborescence packing problem is solvable in polynomial time ${ }^{5), 7)}$ ． Its capacitated version is also solvable in polynomial time ${ }^{10), 11), 13)}$ ．

In this paper，we propose a two－phase heuristic algorithm for the node capacitated in－ tree packing problem．In the first phase，it generates candidate in－trees to be packed． The node capacitated in－tree packing problem can be formulated as an IP（integer programming）problem，and the proposed algorithm employs the delayed column gen－ eration method for the LP－relaxation of the problem to generate promising candidate in－trees．In the second phase，the algorithm computes the packing number of each in－tree．Our algorithm solves this second－phase problem by first modifying feasible solutions of the LP－relaxation problem and then improving them with a greedy al－ gorithm．We conducted computational experiments on benchmark instances and on randomly generated instances with up to 200 nodes．The results show that the pro－ posed algorithm obtains solutions that deviate at most $0.93 \%$ from upper bounds，and comparisons with another approach from the literature show that our method works more effectively for this problem．

## 2．Formulation

A node capacitated in－tree packing problem can be formulated as the following IP problem：

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{j \in T^{*}} x_{j}, \\
\text { subject to } & \sum_{j \in T^{*}} a_{i j} x_{j} \leq b_{i}, \quad \forall i \in V \\
& x_{j} \geq 0,
\end{array} \quad x_{j} \in \mathbb{Z}, \forall j \in T^{*} .
$$

where the notations are summarized as follows：
$V$ ：the set of nodes，
$T^{*}:$ the set of all in－trees rooted at the given root $r \in V$ ，
$a_{i j}$ ：the consumption（defined by equation（1））of an arborescence $j \in T^{*}$ at a node $i \in V$,
$b_{i}$ ：the capacity of a node $i \in V$,
$x_{j}$ ：the packing number of an in－tree $j \in T$ ，
$\mathbb{Z}$ ：the set of all integers

We define $T^{*}$ as the set of all in－trees rooted at the given root $r \in V$ ．However，the number of in－trees in $T^{*}$ can be exponentially large，and it is difficult in practice to handle all of them．We therefore consider a subset $T \subseteq T^{*}$ of in－trees and deal with the following problem：

$$
\begin{aligned}
P(T) \text { maximize } & \sum_{j \in T} x_{j}, \\
\text { subject to } & \sum_{j \in T} a_{i j} x_{j} \leq b_{i}, \quad \forall i \in V, \\
& x_{j} \geq 0, \quad x_{j} \in \mathbb{Z}, \forall j \in T .
\end{aligned}
$$

If $T=T^{*}$ ，the problem $P\left(T^{*}\right)$ is equivalent to the original problem（3）．We denote the optimal value of $P(T)$ by $\mathrm{OPT}_{P(T)}$ ．

We also consider the LP relaxation problem of $P(T)$ ，which is formally described as follows：

$$
\begin{aligned}
L P(T) \quad \text { maximize } & \sum_{j \in T} x_{j}, \\
\text { subject to } & \sum_{j \in T} a_{i j} x_{j} \leq b_{i}, \quad \forall i \in V \\
& x_{j} \geq 0,
\end{aligned} \forall j \in T .
$$

When $T=T^{*}$ ，the problem $L P\left(T^{*}\right)$ is the LP relaxation of the original problem（3）． We denote the optimal value of $L P(T)$ by $\mathrm{OPT}_{L P(T)}$ ．

In general，$\left\lfloor\mathrm{OPT}_{L P(T)}\right\rfloor$（where $\lfloor x\rfloor$ stands for the floor function of $x$ ）gives an up－ per bound of $\mathrm{OPT}_{P(T)}$ because $\mathrm{OPT}_{P(T)}$ is an integer．Note that if $T \neq T^{*}$ ，then $\mathrm{OPT}_{L P(T)}$ is not necessarily an upper bound of $\mathrm{OPT}_{P\left(T^{*}\right)}$ ．For convenience，denote the vector of variables $x_{j}$ for all $j \in T$ by $\left(x_{j} \mid j \in T\right)$ ．Then，for any feasible solution $\left(x_{j} \mid j \in T\right)$ of $L P(T),\left(\left\lfloor x_{j}\right\rfloor \mid j \in T\right)$ is a feasible solution of $P\left(T^{*}\right)$ and its objective value is a lower bound of $\operatorname{OPT}_{P\left(T^{*}\right)}$ ．

## 3．In－trees Generating Algorithm

## 3．1 Pricing problem

We employ the delayed column generation method to generate candidate in－trees to be packed．It starts from an arbitrary set $T \subseteq T^{*}$ ，and repeatedly augments the set $T$ until some stopping criterion is satisfied．To apply the delayed column generation method，we consider the following dual of the LP relaxation problem $L P(T)$ ：

$$
\begin{array}{ll}
D(T) \quad \text { minimize } & \sum_{i \in V} b_{i} \lambda_{i}, \\
\text { subject to } & \sum_{i \in V} a_{i j} \lambda_{i} \geq 1, \quad \forall j \in T \\
& \lambda_{i} \geq 0,
\end{array} \forall i \in V
$$

When $T=T^{*}$ ，the problem $D\left(T^{*}\right)$ is the dual of the LP relaxation problem $L P\left(T^{*}\right)$ ． Thus，the pricing problem of $L P(T)$ is defined as the problem of finding an in－tree $\tau \in T^{*} \backslash T$ that satisfies

$$
\begin{equation*}
\sum_{i \in V} a_{i \tau} \lambda_{i}^{*}<1 \tag{4}
\end{equation*}
$$

where $\left(\lambda_{i}^{*} \mid i \in V\right)$ is an optimal dual solution of the problem with the current $T$ ．If there is no in－tree which satisfies condition（4），then the optimal value of the problem $L P(T)$ cannot be improved any more．On the other hand，if condition（4）is satisfied by a certain in－tree $\tau \in T^{*} \backslash T$ ，then the optimal value of the problem $L P(T)$ can be improved by adding the in－tree $\tau$ into $T$ ．

Let $E_{j}$ be the set of all edges in each in－tree $j \in T^{*}$ ，and $\phi(v w):=\lambda_{v}^{*} t(v w)+\lambda_{w}^{*} h(v w)$ be the cost of each edge $v w \in E$ ．Defining $a_{i \tau}$ as in equation（1），it is possible to trans－ form the left－hand side of（4）as follows：

$$
\begin{align*}
\sum_{i \in V} a_{i \tau} \lambda_{i}^{*} & =\sum_{i \in V} \lambda_{i}^{*}\left\{\sum_{e \in \delta_{\tau}^{+}(i)} t(e)+\sum_{e \in \delta_{\tau}^{-}(i)} h(e)\right\} \\
& =\sum_{v w \in E_{\tau}}\left\{\lambda_{v}^{*} t(v w)+\lambda_{w}^{*} h(v w)\right\} \\
& =\sum \phi(v w) \tag{5}
\end{align*}
$$

Thereby，after calculating the minimum value of equation（5），we know if there is a
possibility of improving the optimal value of problem $L P(T)$ by adding an in－tree $\tau$ Given the costs of edges $\phi(v w)$ ，the problem of finding an in－tree that minimizes the total cost $\sum_{v w \in E_{\tau}} \phi(v w)$ is called the minimum weight rooted arborescence problem． We therefore can solve the pricing problem by solving the minimum weight rooted ar－ borescence problem．Note that an arborescence is usually defined as an out－tree，but the direction of the rooted tree does not make any essential difference to this problem．

The minimum weight rooted arborescence problem takes as inputs a directed graph $G=(V, E)$ ，a root node $r \in V$ and an edge cost function $\phi: E \rightarrow \mathbb{R}$ ．The problem consists of finding a rooted arborescence with minimum total edge cost．The prob－ lem can be solved in $O(|E \| V|)$ time by Edmonds＇algorithm ${ }^{4)}$ ．Bock ${ }^{1)}$ and Chu and Liu ${ }^{3)}$ obtained similar results．Gabow et al．${ }^{6)}$ presented the best results so far with an algorithm of time complexity $O(|E|+|V| \log |V|)$ ，which uses Fibonacci heap．

In each iteration of the in－tree generation phase of our algorithm，an in－tree $\tau$ that minimizes the left－hand side of（4）is computed and is added into $T$ provided that it satisfies（4）．

## 3．2 Stopping criteria of the delayed column generation method

In this subsection，we consider the stopping criteria of the delayed column gener－ ation method．The following theorem shows that we can obtain an upper bound of $\mathrm{OPT}_{L P\left(T^{*}\right)}$ at each iteration of the delayed column generation method．

Theorem 1 Let $\hat{\lambda}_{i} \geq 0$ be real numbers for $i \in V$ and $\alpha=\min _{j \in T^{*}}\left\{\sum_{i \in V} a_{i j} \hat{\lambda}_{i}\right\}$ ． If $\alpha>0$ holds，then $\sum_{i \in V} b_{i}\left(\hat{\lambda}_{i} / \alpha\right)$ is an upper bound of $\mathrm{OPT}_{L P\left(T^{*}\right)}$ ．
Proof：Let $\mathrm{OPT}_{L P\left(T^{*}\right)}$（resp．， $\mathrm{OPT}_{D\left(T^{*}\right)}$ ）be the optimal value of the problem $L P\left(T^{*}\right)$ （resp．，$D\left(T^{*}\right)$ ）．From the duality theorem， $\mathrm{OPT}_{L P\left(T^{*}\right)}=\mathrm{OPT}_{D\left(T^{*}\right)}$ ．By the definition of $\alpha(>0), \sum_{i \in V} a_{i j} \hat{\lambda}_{i} \geq \alpha$ holds for all $j \in T^{*}$ ，which is equivalent with

$$
\sum_{i \in V} a_{i j}\left(\hat{\lambda}_{i} / \alpha\right) \geq 1, \quad \forall j \in T^{*}
$$

Thus，$\left(\hat{\lambda}_{i} / \alpha \mid i \in V\right)$ is a feasible solution of the problem $D\left(T^{*}\right)$ and its objective value $w=\sum_{i \in V} b_{i}\left(\hat{\lambda}_{i} / \alpha\right)$ satisfies $\operatorname{OPT}_{D\left(T^{*}\right)} \leq w$ ．Hence we have $\operatorname{OPT}_{L P\left(T^{*}\right)} \leq w . \square$

Theorem 1 implies that we can obtain an upper bound of $\mathrm{OPT}_{P\left(T^{*}\right)}$ at each iteration
of the delayed column generation method．Furthermore，$\left\lfloor\sum_{i \in V} b_{i}\left(\lambda_{i}^{*} / \alpha\right)\right\rfloor$ is an upper bound of $\mathrm{OPT}_{P\left(T^{*}\right)}$ because $\left\lfloor\mathrm{OPT}_{L P(T)}\right\rfloor$ gives an upper bound of $\mathrm{OPT}_{P(T)}$ for any $T \subseteq T^{*}$ ．Note that

$$
\mathrm{OPT}_{L P(T)} \leq \mathrm{OPT}_{L P\left(T^{*}\right)} \leq \frac{\mathrm{OPT}_{L P(T)}}{\alpha}
$$

always holds，where $\operatorname{OPT}_{L P(T)}=\mathrm{OPT}_{D(T)}=\sum_{i \in V} b_{i} \lambda_{i}^{*}$ ．Thus，we can obtain $\left\lfloor\mathrm{OPT}_{L P\left(T^{*}\right)}\right\rfloor$ even without executing the delayed column generation method until the end（i．e．，until there is no tree $\tau \in T^{*}$ that satisfies（4）），provided that

$$
\begin{equation*}
\left\lfloor\mathrm{OPT}_{L P(T)} / \alpha\right\rfloor \leq \mathrm{OPT}_{L P(T)} \tag{6}
\end{equation*}
$$

We employ condition（6）as one of the stopping criteria of our delayed column generation method．

If only condition（6）is employed and $\mathrm{OPT}_{L P(T)}$ is large，then there is a possibility that the delayed column generation method generates a lot of in－trees．Thus，we employ an additional condition

$$
\frac{\mathrm{OPT}_{L P(T)} / \alpha-\mathrm{OPT}_{L P(T)}}{\mathrm{OPT}_{L P(T)}} \leq \epsilon
$$

which is equivalent with

$$
\begin{equation*}
\alpha \geq \frac{1}{1+\epsilon} \tag{7}
\end{equation*}
$$

where $\epsilon \geq 0$ is a parameter that represents the accuracy of the obtained upper bound $\mathrm{OPT}_{L P(T)} / \alpha$ against $\mathrm{OPT}_{L P\left(T^{*}\right)}$ ．In the computational experiments in Section 5 ，we set $\epsilon:=0.0001$ ．We observed through preliminary computational experiments that even if the delayed column generation method was stopped by conditions（6）or（7），good solutions for $P\left(T^{*}\right)$ were obtained，which implies that the set of in－trees generated un－ til one of these conditions is satisfied seems to be sufficient for obtaining high quality solutions to $P\left(T^{*}\right)$ ．

## 3．3 Initial set of in－trees

The delayed column generation method can be executed even with only one initial in－tree．However，we observed through preliminary experiments that the computation time was usually reduced if an initial set with more in－trees was given．We also noticed that for randomly generated in－trees the computation time did not decrease so much when we increase the number of in－trees in the initial set beyond $|V|$ ．We therefore employ $|V|$ randomly generated in－trees as the initial set of in－trees．

Imahori et al．${ }^{9)}$ proved that finding one packed in－tree that satisfies the node capac－ ity restriction（2）is NP－hard．Consequently，it is difficult to create an initial set of in－trees for it and hence we dealt only with problems with $t(e) \ll b_{i}, \forall e \in \delta^{+}(i)$ and $h(e) \ll b_{i}, \forall e \in \delta^{-}(i)$ for all $i \in V$ ．

## 3．4 Proposed algorithm to generate in－trees

The algorithm to generate in－trees based on the delayed column generation approach， which we call GenInTrees，is formally described as follows：

## Algorithm GenInTrees

Input a graph $G=(V, E)$ ，a root node $r \in V$ ，tail and head consumption functions on edges $t: E \rightarrow \mathbb{R}_{+}, h: E \rightarrow \mathbb{R}_{+}$，node capacities $b_{i} \in \mathbb{R}_{+}$for all $i \in V$ and a parameter $\epsilon$ ．
Output a set of in－trees $T$ ，an upper bound $\left\lfloor\mathrm{OPT}_{L P(T)} / \alpha\right\rfloor$ and a lower bound $\sum_{j \in T}\left\lfloor x_{j}^{\max }\right\rfloor$.
（1）Create the initial set $T_{0}$ of $|V|$ in－trees randomly．Set $T:=T_{0}$ and $x_{j}^{\max }:=0$ for all $j \in T$ ．
（2）Solve the problem $L P(T)$ ．Let $\mathrm{OPT}_{L P(T)}$ be the optimal value，$\left(x_{j}^{*} \mid j \in T\right)$ be the obtained optimal solution and $\left(\lambda_{i}^{*} \mid i \in V\right)$ be the corresponding optimal dual solution．
（3）If $\sum_{j \in T}\left\lfloor x_{j}^{*}\right\rfloor>\sum_{j \in T}\left\lfloor x_{j}^{\max }\right\rfloor$ holds，then set $x_{j}^{\max }:=x_{j}^{*}$ for all $j \in T$ ．
（4）After setting the edge $\operatorname{costs} \phi(v w):=\lambda_{v}^{*} t(v w)+\lambda_{w}^{*} h(v w)$ for all $v w \in E$ ，execute Edmonds＇algorithm．Let $\tau$ be the in－tree with minimum total cost and $\alpha$ be its cost．
（5）If $\left\lfloor\mathrm{OPT}_{L P(T)} / \alpha\right\rfloor \leq \mathrm{OPT}_{L P(T)}$ or $\alpha \geq 1 /(1+\epsilon)$ holds，then output the set of in－trees $T$ ，the upper bound $\left\lfloor\mathrm{OPT}_{L P(T)} / \alpha\right\rfloor$ ，the lower bound $\sum_{j \in T}\left\lfloor x_{j}^{\max }\right\rfloor$ and stop．Else set $T:=T \cup\{\tau\}$ and return to Step 2 ．

## 4．In－trees Packing Algorithm

## 4．1 Evaluation criteria of in－trees

The GEnInTrees algorithm could generate in－trees to obtain high quality solutions of $P\left(T^{*}\right)$ ．In this subsection，we propose a greedy algorithm to pack the in－trees enumer－
ated by the GenInTrees algorithm．We use the maximum packing number，calculated based on the available capacity in each node，as the evaluation criterion of each in－ tree．Let $\left(x_{j} \mid j \in T\right)$ be the current feasible solution of $P\left(T^{*}\right)$ ．The current available capacity in each node $i \in V$ is defined as

$$
\begin{equation*}
\bar{b}_{i}=b_{i}-\sum_{j \in T} a_{i j} x_{j} \tag{8}
\end{equation*}
$$

Then the maximum packing number $\Delta_{j}$ of each in－tree $j \in T$ is calculated as follows：

$$
\begin{equation*}
\Delta_{j}=\min _{i \in V}\left\lfloor\frac{\bar{b}_{i}}{a_{i j}}\right\rfloor \tag{9}
\end{equation*}
$$

In each iteration of our greedy algorithm，an in－tree $j \in T$ that maximizes $\Delta_{j}$ is chosen and the value of $x_{j}$ is increased．Let $j^{*} \in T$ be an in－tree with the highest $\Delta_{j}$ among all $j \in T$ ．A simple approach to decide the amount of increment is to use the value of $\Delta_{j^{*}}$（i．e．，$x_{j^{*}}:=x_{j^{*}}+\Delta_{j^{*}}$ ）；however，this approach does not give good solutions for $P\left(T^{*}\right)$ ．The available capacities $\bar{b}_{i}$ on the nodes are decreased as the packing number $x_{j^{*}}$ of the in－tree $j^{*} \in T$ is increased，and the amount of decrement of $\Delta_{j}$ is different among in－trees．Thus，we employ an approach in which the in－tree with the highest $\Delta_{j}$ is packed while its $\Delta_{j}$ value is the highest．

For any in－tree $j \in T \backslash\left\{j^{*}\right\}$ ，we define $q_{j}$ as the minimum value such that after increasing $x_{j^{*}}$ by $q_{j}$ ，the resulting $\Delta_{j^{*}}$ becomes smaller than the resulting $\Delta_{j}$ ．Such a value of $q_{j}$ must satisfy the following condition for all $i \in V$ ：

$$
\begin{equation*}
\left\lfloor\frac{\bar{b}_{i}-a_{i j^{*}} q_{j}}{a_{i j}}\right\rfloor>\Delta_{j^{*}}-q_{j} \tag{10}
\end{equation*}
$$

Because we use $q_{j}$ as the value to increase the packing number $x_{j^{*}}$ of in－tree $j^{*}$ ，it has to satisfy

$$
\begin{equation*}
0 \leq q_{j} \leq \Delta_{j^{*}} \tag{11}
\end{equation*}
$$

The right－hand side of（10）is an integer and hence the condition（10）is equivalent to

$$
\begin{equation*}
\frac{\bar{b}_{i}-a_{i j^{*}} q_{j}}{a_{i j}}-1 \geq \Delta_{j^{*}}-q_{j} \tag{12}
\end{equation*}
$$

Let $\lceil x\rceil$ be the ceiling function of $\frac{a_{i j}}{x}$ ．Condition（12）is satisfied for all $i \in V$ if and only
if

$$
\begin{cases}\left\lvert\, \begin{array}{ll}
\left.\frac{\bar{b}_{i}-a_{i j}\left(\Delta_{j^{*}}+1\right)}{a_{i j^{*}}-a_{i j}} \right\rvert\, \geq q_{j}, & \left(a_{i j^{*}}>a_{i j}\right) \\
{\left[\left.\frac{a_{i j}\left(\Delta_{j^{*}}+1\right)-\bar{b}_{i}}{a_{i j}-a_{i j^{*}}} \right\rvert\, \leq q_{j},\right.} & \left(a_{i j^{*}}<a_{i j}\right) \\
\left.\frac{\bar{b}_{i}}{a_{i j}} \right\rvert\, \geq \Delta_{j^{*}}, & \left(a_{i j^{*}}=a_{i j}\right) \tag{13}
\end{array}\right., \$ \text { ll},\end{cases}
$$

are satisfied for all $i \in V$ ．Let $Q_{j} \subseteq \mathbb{Z}$ be the set of all integer values of $q_{j}$ that satisfy（11），（13）and（14）for all $i \in V$ ．If $Q_{j}=\emptyset$ holds or condition（15）is not satisfied for some $i \in V$ ，then $\Delta_{j}$ never becomes higher than $\Delta_{j^{*}}$（in this case，we assume $q_{j}=+\infty$ for convenience）．Otherwise，$\Delta_{j}$ becomes higher than $\Delta_{j^{*}}$ by in－ creasing $x_{j^{*}}$ by $q_{j}=\min \left\{Q_{j}\right\}$ ．Hence，if we increase the value of $x_{j^{*}}$ by $q$ ，where $q=\min _{j \in T \backslash\left\{j^{*}\right\}}\left\{q_{j}\right\}, \Delta_{j}$ becomes higher than $\Delta_{j^{*}}$ for some $j \in T \backslash\left\{j^{*}\right\}$ ．

## 4．2 Efficient data structure

It is necessary to recalculate $\Delta_{j}$ and $q_{j}$ for all in－trees whenever an in－tree $j^{*}$ with the highest $\Delta_{j}$ among all $j \in T$ is packed．We propose an efficient method to recalculate these values，which eliminates unnecessary recalculation by maintaining a sorted array such that its elements are upper bounds of $\Delta_{j}$ ．

Let $\mathfrak{D}$ be an array with $|T|$ elements sorted in non－increasing order and $j_{k} \in T$ be the index of the tree corresponding to the $k$ th cell of $\mathfrak{D}$ ．This array is maintained so that it satisfies $\Delta_{j_{k}} \leq \mathfrak{D}[k]$ for all $k \in\{1, \ldots,|T|\}$ and $\Delta_{j_{1}}=\mathfrak{D}[1]$ ．Then the in－tree $j_{1}$ has the highest $\Delta_{j}$ among all $j \in T$ ．

The algorithm calculates the values of $q_{j_{k}}$ for $k=2,3, \ldots$ in this order，by conditions （11），（13），（14）and（15）．Assume that the values of $q_{j_{k}}$ are calculated until the element in the $k^{\prime}$ th position．We define $q_{j_{k^{\prime}}}^{\text {min }}$ as the minimum value of $q_{j_{k}}$ among the ones cal－ culated，i．e．，$q_{j_{k^{\prime}}}^{\min }=\min _{k \in\left[2, k^{\prime}\right]} q_{j_{k}}$ ．Hence，if we increase the value of $x_{j_{1}}$ by $q_{j_{k^{\prime}}}^{\min }$ ，there is at lease one in－tree whose $\Delta_{j_{k}}$ becomes higher than $\Delta_{j_{1}}$ among the ones calculated （provided that $q_{j_{k^{\prime}}}^{\min }$ is finite）．Then，suppose

$$
\begin{equation*}
\mathfrak{D}\left[k^{\prime}+1\right] \leq \Delta_{j_{1}}-q_{j_{k^{\prime}}}^{\min } \tag{16}
\end{equation*}
$$

Because $\mathfrak{D}$ is sorted， $\mathfrak{D}[k] \leq \Delta_{j_{1}}-q_{j_{k^{\prime}}}^{\text {min }}$ holds for all $k \geq k^{\prime}+1$ ．By definition，$\Delta_{j_{k}} \leq \mathfrak{D}[k]$ holds for all $k \in\{1, \ldots,|T|\}$ and the value of $\Delta_{j_{k}}$ never increases for all $k$ when $x_{j_{1}}$ is increased．Hence，for all $k \geq k^{\prime}+1, \Delta_{j_{k}}$ does not exceed $\Delta_{j_{1}}$ unless the increment
in $x_{j_{1}}$ is bigger then $q_{j_{k^{\prime}}}^{\min }$ ，which implies $q_{j_{k}}>q_{j_{k^{\prime}}}^{\min }$ ．Therefore，if condition（16）is satisfied，$q_{j_{k^{\prime}}}^{\min }=q=\min _{j \in T \backslash\left\{j^{*}\right\}} q_{j}$ holds，and hence it is not necessary to calculate $q_{j_{k}}$ for all $k \geq k^{\prime}+1$ ．Then the value of $x_{j_{1}}$ is increased by $q$ and the values of $\bar{b}_{i}$ are updated for all $i \in V$ by recomputing them by（8）．

We can reduce the computational effort to update $\Delta_{j_{k}}$ for all $k \in\{1, \ldots,|T|\}$ by using a similar idea to the one for calculating $q$ ．For $k=1,2, \ldots$ in this order，the algorithm calculates $\Delta_{j_{k}}$ by（9）．We denote the new value of $\Delta_{j_{k}}$ by $\bar{\Delta}_{j_{k}}$ ．Assume that the values of $\bar{\Delta}_{j_{k}}$ are calculated until the element in the $k^{\prime \prime}$ th position．We define $\bar{\Delta}_{j_{k^{\prime \prime}}}^{\text {min }}$ as the minimum value of $\bar{\Delta}_{j_{k}}$ among the ones calculated，i．e．， $\bar{\Delta}_{j_{k^{\prime \prime}}}^{\min }=\min _{k \in\left[1, k^{\prime \prime}\right]} \bar{\Delta}_{j_{k}}$ ． Suppose

$$
\begin{equation*}
\mathfrak{D}\left[k^{\prime \prime}+1\right]<\bar{\Delta}_{j_{k^{\prime \prime}}}^{\min } \tag{17}
\end{equation*}
$$

Because $\mathfrak{D}$ is sorted， $\mathfrak{D}[k]<\bar{\Delta}_{j_{k^{\prime \prime}}}^{\min }$ holds for all $k \geq k^{\prime \prime}+1$ ．Then the algorithm stops recalculating $\Delta_{j_{k}}$ ，and for $k=1,2, \ldots, k^{\prime \prime}$ ，it updates $\mathfrak{D}[k]$ with the recom－ puted value $\bar{\Delta}_{j_{k}}$（i．e．， $\mathfrak{D}[k]:=\bar{\Delta}_{j_{k}}$ ）．Afterwards，it sorts the first $k^{\prime \prime}$ elements of $\mathfrak{D}$ in the non－increasing order．The resulting array $\mathfrak{D}$ is sorted in the whole range（i．e．， $\mathfrak{D}[1] \geq \mathfrak{D}[2] \geq \cdots \geq \mathfrak{D}[|T|]$ holds $),$ and it satisfies $\bar{\Delta}_{j_{k}} \leq \mathfrak{D}[k]$ for all $k \in\{1, \ldots,|T|\}$ and $\bar{\Delta}_{j_{1}}=\mathfrak{D}[1]$ ，since we have $\bar{\Delta}_{j_{k}} \leq \Delta_{j_{k}}$ ．

## 4．3 Proposed algorithm to pack in－trees

This section summarizes the greedy algorithm proposed in Section 4．1，together with the data structure in Section 4．2．We call the algorithm PackInTrees，which is for－ mally described as follows．

## Algorithm PackInTrees

Input a problem instance of $P(T)$ and a feasible solution $\left(x_{j}^{(0)} \mid j \in T\right)$ of $P(T)$ ．
Output a feasible solution $\left(x_{j} \mid j \in T\right)$ of $P(T)$ ．
（1）Set $x_{j}:=x_{j}^{(0)}$ for all $j \in T$ and calculate available capacities $\bar{b}_{i}$ for all $i \in V$ by （8）．
（2）Calculate the evaluation criteria $\Delta_{j}$ for all $j \in T$ by 8 and set $\mathfrak{D}[j]:=\Delta_{j}$ ．
（3）Sort $\mathfrak{D}$ in the non－increasing order，and let $j_{k} \in T$ be the index of the tree corre－ sponding to the $k$ th cell of $\mathfrak{D}$ ，i．e．， $\mathfrak{D}[k]=\Delta_{j_{k}}$ holds for all $k \in\{1, \ldots,|T|\}$ ，and $\Delta_{j_{1}} \geq \Delta_{j_{2}} \geq \cdots \geq \Delta_{j_{|T|}}$ is satisfied．
（4）Set $q^{\text {min }}:=\mathfrak{D}[1]$ and $k:=2$ ．
（5）Let $Q_{j_{k}} \subseteq \mathbb{Z}$ be the set of all integer values of $q_{j_{k}}$ that satisfy（11），（13）and（14） with $j=j_{k}$ for all $i \in V$ ．If $Q_{j_{k}} \neq \emptyset$ and $q_{j_{k}}=\min \left\{Q_{j_{k}}\right\}<q^{\min }$ are satisfied and（15）holds for all $i \in V$ ，then set $q^{\min }:=q_{j_{k}}$ ．
（6）If $k=|T|$ ，then go to Step 8 ．
（7）If $\mathfrak{D}[k+1]>\mathfrak{D}[1]-q^{\min }$ ，then set $k:=k+1$ and return to Step 5 ．
（8）Set $x_{j_{1}}:=x_{j_{1}}+q^{\min }$ ．Recalculate available capacities $\bar{b}_{i}$ for all $i \in V$ by 8 ．
（9）Set $\Delta^{\text {min }}:=\mathfrak{D}[1]$ and $k:=1$ ．
（10）Recalculate $\Delta_{j_{k}}$ by（9）and set $\mathfrak{D}[k]:=\Delta_{j_{k}}$ ．If $\Delta_{j_{k}}<\Delta^{\min }$ ，then set $\Delta^{\min }:=\Delta_{j_{k}}$.
（11）If $k=|T|$ ，then go to Step 13.
（12）If $\mathfrak{D}[k+1] \geq \Delta^{\min }$ ，then set $k:=k+1$ and return to Step 10 ．
（13）Sort the first $k$ elements of $\mathfrak{D}$ in the non－increasing order，and modify $j_{\hat{k}}(\hat{k} \in$ $\{1, \ldots, k\}$ ）accordingly．
（14）If $\mathfrak{D}[1]=0$ ，then output the feasible solution $\left(x_{j} \mid j \in T\right)$ and stop；otherwise， return to Step 4.
One iteration of the PackInTrees algorithm consists of calculating $q^{\text {min }}$ and $\Delta^{\text {min }}$ and sorting $\mathfrak{D}$ ．Its worst case time complexity is $O(|V||T|+|T| \log |T|)$ ．Let $k^{\prime}$ be the value of $k$ in Step 8 and $k^{\prime \prime}$ be the value of $k$ in Step 13．It is not hard to show that $k^{\prime \prime} \geq k^{\prime}$ holds，and by using these parameters，the actual time complexity becomes $O\left(|V|\left(k^{\prime}+k^{\prime \prime}\right)+k^{\prime \prime} \log k^{\prime \prime}\right)=O\left(k^{\prime \prime}\left(|V|+\log k^{\prime \prime}\right)\right)$ ，which is usually much smaller than the worst－case complexity because $k^{\prime \prime} \ll|T|$ holds in many cases．In each iteration，at least one in－tree is packed and hence the maximum number of iterations is $\mathrm{OPT}_{L P\left(T^{*}\right)}$ ． Hence，the whole algorithm runs in $O\left(\operatorname{OPT}_{L P\left(T^{*}\right)}(|V||T|+|T| \log |T|)\right)$ time．

We set an initial feasible solution $\left(x_{j}^{(0)} \mid j \in T\right)$ as an input for the PackInTrees algorithm．We observed through preliminary experiments that if we set $x_{j}^{(0)}:=0$ for all $j \in T$ ，the PackInTrees algorithm does not output good solutions．On the other hand，good solutions are found by setting the solution obtained by the GenInTrees algorithm，$\left(x_{j}^{\max } \mid j \in T\right)$ ，as the initial feasible solution．Thus，we employ this solution as the initial feasible one for the PackInTrees algorithm．

## 5．Computational Experiments

## 5．1 Problem instances

We use two types of instances in our experiment．The first one is based on sensor location data used by Heinzelman et al．${ }^{8)}$ and Sasaki et al．${ }^{12)}$ in their papers about sensor networks．From their data，we generated complete graphs with symmetric tail and head consumption functions and node capacities，where the consumption functions are equivalent to the amount of energy consumed to transmit and receive packets，and node capacities are equivalent to the capacities of sensor batteries in their papers．We call the instances hcb100，sfis100－1，sfis100－2 and sfis100－3，where hcb100 is the instance generated using the sensor location data in 8），and sfis100－1， 2 and 3 are the instances generated using the sensor location data called data1， 2 and 3，respectively，in 12）．

The second type consists of random graphs whose out－degrees are distributed in a small range．We named them as＂rnd $n-d_{\min }-d_{\max }$ ，＂where $n$ is the number of nodes， $d_{\text {min }}$ is the minimum out－degree，and $d_{\max }$ is the maximum out－degree．Three problem instances were generated，which are rnd100－5－10，rnd100－30－50 and rnd200－5－10．Tail and head consumptions for these instances were randomly chosen from the integers in the intervals $[10,50]$ and $[1,5]$ ，respectively，for all edges except that the tail consump－ tion of edges entering the root node $r$ were randomly chosen from the integers in the intervals $[100,500]$ so that these edges cannot be used frequently．Node capacities were set to 100,000 for all $i \in V \backslash\{r\}$ and $+\infty$ for the root node $r$ ．

The algorithms were coded in the C＋＋language and ran on a Dell Precision 470 （Xeon（NetBurst）3GHz，2MB cache，1GB memory）．We used the primal simplex method in GLPK4．34 ${ }^{\star 1}$ as LP solver．

We compare the solutions obtained by the proposed algorithm with the ones obtained by the algorithm in 12）．Note that their algorithm keeps sending packets even though the base station does not receive packets from all sensors，where this situation happens only if there exists at least one sensor whose battery has run out，and they reported

[^1]

Fig． 1 Behavior of the GenInTrees algorithm applied to sfis100－1
the number of times packets are sent（which they call rounds）for several values of the number of available sensors．Among such results，we use the number of rounds when all sensors are available，because in this paper we consider the number of spanning in－trees， which corresponds to the number of times packets are sent from all the sensors

## 5．2 Experimental results

Figure 1 represents the behavior of GenInTrees algorithm applied to sfis100－1．The figure shows the improvement of $\mathrm{OPT}_{L P(T)}$ and of the best values of the upper and lower bounds of $P\left(T^{*}\right)$ as in－trees are added to $T$ in each iteration．Along with this improvement，the difference between the upper and lower bounds becomes smaller and the ratios of improvement decrease．In general，this tendency is often observed when applying the delayed column generation method．After a certain number of iterations， we can affirm we obtained good upper and lower bounds．

Table 1 shows the results of the proposed algorithm for the problem instances ex－ plained in Section 5．1．The first three columns represent instance names，number of nodes（without a root node）$|V \backslash\{r\}|$ ，and number of edges $|E|$ ．Column $|T|$ shows the number of in－trees generated by algorithm GenInTrees，and columns UB and LB show the upper and lower bounds of $\mathrm{OPT}_{P\left(T^{*}\right)}$ ，respectively，computed by GenInTrees．The
following columns represent objective values，denoted＂Obj．，＂gaps in \％between UB and Obj．，i．e．，$((\mathrm{UB}-\mathrm{Obj}) / \mathrm{UB}) \times$.100 ，and computation times in seconds of the pro－ posed algorithm．The number of rounds reported in .12 ），which are equivalent to the number of packed in－trees，is also shown for comparison purposes，where a mark＂－＂ means that the result is not available．
The results presented in the table show our algorithm obtains better results than Sasaki et al．The gaps between upper bounds and objective values are quite small， indicating that the obtained solutions are close to $\mathrm{OPT}_{P\left(T^{*}\right)}$ ．Instance rnd200－5－10 is the only one with 200 nodes and although the number of edges is not much bigger than other instances，the computation time is at least 10 times bigger except for hcb100． Thus，the computational effort increases rapidly when the number of nodes increases． One of the reasons for this behavior is the increase of the computational effort of the LP solver．

## 6．Conclusions

In this paper，we proposed a two－phase heuristic algorithm for the node capacitated in－tree packing problem．In the first phase，it generates candidate in－trees to be packed employing the delayed column generation method for the LP－relaxation of the prob－ lem．We showed that solving the pricing problem is equivalent to solving the minimum weight rooted arborescence problem．In the second phase，the algorithm computes the packing number of each in－tree by first modifying feasible solutions of the LP－relaxation problem and then improving them with a greedy algorithm．We proposed an efficient data structure that makes use of the properties of the evaluation criteria．The proposed algorithm obtains solutions that are close to the upper bounds and is proved to be effective for this problem．

Acknowledgments The authors would like to thank Professor Shinji Imahori for his detailed comments on earlier versions of this paper．

## References

1）Bock，F．C．：An Algorithm to Construct a Minimum Directed Spanning Tree in a Directed Network，Developments in Operations Research（Avi－Itzak，B．，ed．），Gor－

Table 1 Computational results

| Instance name | $\|V \backslash\{r\}\|$ | $\|E\|$ | GenInTrees |  |  | Proposed algorithm |  |  | Sasaki et el． （2007） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\|T\|$ | UB | LB | Obj． | Gap（\％） | Time（s） |  |
| hcb100 | 100 | 10，100 | 2752 | 1124 | 1095 | 1121 | 0.27 | 207.78 | － |
| sfis100－1 | 100 | 10，100 | 1669 | 1097 | 1064 | 1089 | 0.73 | 82.11 | 961 |
| sfis100－2 | 100 | 10，100 | 1700 | 1097 | 1065 | 1090 | 0.64 | 85.97 | 969 |
| sfis100－3 | 100 | 10，100 | 1378 | 1101 | 1067 | 1095 | 0.54 | 58.21 | 1022 |
| rnd100－5－10 | 100 | 776 | 940 | 3225 | 3186 | 3210 | 0.47 | 30.42 | － |
| rnd100－30－50 | 100 | 3991 | 1985 | 6250 | 6209 | 6235 | 0.24 | 97.86 | － |
| rnd200－5－10 | 200 | 1525 | 2237 | 2702 | 2631 | 2677 | 0.93 | 1009.64 | － |

don and Breach，New York，pp．29－44（1971）．
2）Calinescu，G．，Kapoor，S．，Olshevsky，A．and Zelikovsky，A．：Network Lifetime and Power Assignment in Ad－Hoc Wireless Networks，Proceedings of the 11th European Symposium on Algorithms，Lectre Notes in Computer Science，Vol．2832，Springer， pp．114－126（2003）．
3）Chu，Y．and Liu，T．：On the Shortest Arborescence of a Directed Graph，Science Sinica，Vol．14，pp．1396－1400（1965）．
4）Edmonds，J．：Optimum Branchings，Journal of Research of the National Bureau of Standards，Vol．71B，pp．233－240（1967）．
5）Edmonds，J．：Edge－Disjoint Branchings，Combinatorial Algorithms（Rustin，B．， ed．），Academic Press，pp．91－96（1973）．
6）Gabow，H．N．，Galil，Z．，Spencer，T．and Tarjan，R．E．：Efficient Algorithms for Finding Minimum Spanning Trees in Undirected and Directed Graphs，Combina－ torica Archive，Vol．6，pp．109－122（1986）．
7）Gabow，H．N．and Manu，K．S．：Packing algorithms for arborescences（and span－ ning trees）in capacitated graphs，Mathematical Programming，Vol．82，pp．83－109 （1998）．
8）Heinzelman，W．B．，Chandrakasan，A．P．and Balakrishnan，H．：An Application Specific Protocol Archtiecture for Wireless Microsensor Networks，IEEE Transac－ tions on Wireless Communications，Vol．1，pp．660－670（2002）．
9）Imahori，S．，Miyamoto，Y．，Hashimoto，H．，Kobayashi，Y．，Sasaki，M．and Yagiura， M．：The Complexity of the Node Capacitated In－Tree Packing Problem，Proceedings of International Network Optimization Conference（2009）．to appear．
10）Korte，B．and Vygen，J．：Combinatorial Optimization：Theory and Algorithms， Springer－Verlag，4th edition（2007）．
11）Mader，W．：On n－edge－connected digraphs，Combinatorica，Vol．1，pp．385－386 （1981）．

12）Sasaki，M．，Furuta，T．，Ishizaki，F．and Suzuki，A．：Multi－Round Topology Con－ struction in Wireless Sensor Networks，Proceedings of the Asia－Pacific Symposium on Queueing Theory and Network Applications，pp．377－384（2007）．
13）Schrijver，A．：Combinatorial Optimization，Springer－Verlag（2003）．


[^0]:    $\dagger 1$ 名古屋大学
    Nagoya University
    $\dagger 2$ 南山大学
    Nanzan University

[^1]:    $\star 1$ GLPK－GNU Project－Free Software Foundation（FSF），http：／／www．gnu．org／software／glpk／，16 Feb， 2009.

