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頂点容量制約付き有向全域木
パッキング問題に対する近似解法

田 中 勇 真†1 佐々木 美 裕†2 柳 浦 睦 憲†1

本論文では, 頂点容量制約付き有向全域木パッキング問題に対する近似解法を提案
する. この問題では入力として, 有向グラフ, ルート頂点, 頂点容量, 辺の始点側と終
点側にそれぞれ消費量が与えられる. 目的は, ルート頂点に流入する有向全域木のパッ
キング回数を最大化することである. ただし, 有向全域木の各頂点に対する消費量の
合計は, 与えられた頂点容量を超えてはいけない. この問題は NP 困難であることが
知られている.

提案手法ではこの問題を, (1) パッキングに用いる木の候補を探す, (2) それぞれの
木に対してパッキング回数を決定する, という 2 つの段階に分けて考えている. 前者
に対しては, 整数計画問題として定式化した後に, その線形緩和問題に対して列生成法
を適用する. 後者に対しては, 線形緩和問題の解を修正したものに貪欲アルゴリズム
を適用することを考案した.

既存研究で用いられているグラフと, ランダムに生成したグラフに対して計算実験
を行い, 提案したアルゴリズムの効果について比較検討を行った. その結果, 既存研究
より良い結果が得られ, 提案アルゴリズムがうまく動作していることを確認した.

A Heuristic Algorithm for the Node Ccapacitated
In-tree Packing Problem

Yuma Tanaka,†1 Mihiro Sasaki†2

and Mutsunori Yagiura†1

In this paper, we deal with the node capacitated in-tree packing problem.
The input consists of a directed graph, a root node, a node capacity function
and edge consumption functions for heads and tails. The problem consists of
finding the maximum number of rooted in-trees such that the total consump-
tion of the in-trees at each node does not exceed the capacity of the node. This
problem is known to be NP-hard.

We propose a two-phase heuristic algorithm for this problem. In the first
phase, it generates candidate in-trees to be packed. The node capacitated

in-tree packing problem can be formulated as an IP (integer programming)
problem, and the proposed algorithm employs the delayed column generation
method for the LP (linear programming)-relaxation problem of the IP to gener-
ate promising candidate in-trees. In the second phase, the algorithm computes
the packing number of each in-tree. Our algorithm solves this second-phase
problem by first modifying feasible solutions of the LP-relaxation problem and
then improving them with a greedy algorithm.

We conducted computational experiments on graphs used in related papers
and on randomly generated graphs. The results indicate that our algorithm
has a better performance than other existing methods.

1. Introduction

In this paper, we consider the node capacitated in-tree packing problem. The input

consists of a directed graph, a root node, a node capacity function and edge consumption

functions for heads and tails. The problem consists of finding the maximum number of

rooted in-trees such that the total consumption of the in-trees at each node does not

exceed the capacity of the node.

Let G = (V, E) be a directed graph, r ∈ V be a root node and R+ be the set of non-

negative real numbers. In addition, let t : E → R+ and h : E → R+ be tail and head

consumption functions on directed edges, respectively, and bi ∈ R+ be the capacity of a

node i ∈ V . For convenience, we define T ∗ as the set of all in-trees rooted at the given

root r ∈ V in the graph G. Let δ+
j (i) (resp., δ−j (i)) be the set of edges in an in-tree

j ∈ T ∗ leaving (resp., entering) a node i ∈ V . The consumption aij of an in-tree j ∈ T ∗

at a node i ∈ V is defined as

aij =
∑

e∈δ+
j

(i)

t(e) +
∑

e∈δ−
j

(i)

h(e). (1)

We call the first term of the above equation (1) tail consumption, and the second term

head consumption. The node capacitated in-tree packing problem is to find a subset

T ⊆ T ∗ of in-trees and the packing number xj of each in-tree j ∈ T subject to the node
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capacity restriction ∑
j∈T

aijxj ≤ bi, ∀i ∈ V, (2)

so as to maximize the total number of packed in-trees
∑

j∈T
xj .

This problem is known to be NP-hard9). Furthermore, it is still NP-hard even if

instances are restricted to complete graphs embedded in a space with tail consumptions

depending only on the distance between end nodes.

This problem is studied in the context of sensor networks. Recently, several kinds

of graph packing problems are studied in the context of ad hoc wireless networks and

sensor networks. These problems are called network lifetime problems. The important

problems included among this category are the node capacitated spanning subgraph

packing problems2),8),12). For sensor networks, for example, a spanning subgraph corre-

sponds to a communication network topology for collecting information from all nodes

(sensors) to the root (base station) or for sending information from the root to all other

nodes. Sending a message along an edge consumes energy at end nodes, usually depend-

ing on the distance between them. The use of energy for each sensor is severely limited

because the sensors use batteries. It is therefore important to design the topologies for

communication in order to save energy consumption and make sensors operate as long as

possible. For this problem, Heinzelman et al.8) proposed an algorithm, called LEACH-

C (low energy adaptive clustering hierarchy centralized), that uses arborescences with

limited height for communication topologies. For more energy effcient communication

networks, a multiround topology construction problem was formulated as an integer

programming problem, and a heuristic solution method was proposed in 12). In the

formulation of 2), head consumptions are not considered, and the consumption at each

node is the maximum tail consumption among the edges leaving the node. There are

variations of the problem with respect to additional conditions on the spanning sub-

graph such as strong connectivity, symmetric connectivity, and directed out-tree rooted

at a given node. Calinescu et al.2) discussed the hardness of the problem and proposed

several approximation algorithms.

These network lifetime problems are similar to the well-known edge-disjoint spanning

arborescence packing problem: Given a directed graph G = (V, E) and a root r ∈ V ,

find the maximum number of edge-disjoint spanning arborescences rooted at r. The

edge-disjoint spanning arborescence packing problem is solvable in polynomial time5),7).

Its capacitated version is also solvable in polynomial time10),11),13).

In this paper, we propose a two-phase heuristic algorithm for the node capacitated in-

tree packing problem. In the first phase, it generates candidate in-trees to be packed.

The node capacitated in-tree packing problem can be formulated as an IP (integer

programming) problem, and the proposed algorithm employs the delayed column gen-

eration method for the LP-relaxation of the problem to generate promising candidate

in-trees. In the second phase, the algorithm computes the packing number of each

in-tree. Our algorithm solves this second-phase problem by first modifying feasible

solutions of the LP-relaxation problem and then improving them with a greedy al-

gorithm. We conducted computational experiments on benchmark instances and on

randomly generated instances with up to 200 nodes. The results show that the pro-

posed algorithm obtains solutions that deviate at most 0.93% from upper bounds, and

comparisons with another approach from the literature show that our method works

more effectively for this problem.

2. Formulation

A node capacitated in-tree packing problem can be formulated as the following IP

problem:

maximize
∑
j∈T∗

xj ,

subject to
∑
j∈T∗

aijxj ≤ bi, ∀i ∈ V, (3)

xj ≥ 0, xj ∈ Z, ∀j ∈ T ∗.

where the notations are summarized as follows:

V : the set of nodes,

T ∗: the set of all in-trees rooted at the given root r ∈ V ,

aij : the consumption (defined by equation (1)) of an arborescence j ∈ T ∗ at a node

i ∈ V ,

bi: the capacity of a node i ∈ V ,
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xj : the packing number of an in-tree j ∈ T ,

Z: the set of all integers.

We define T ∗ as the set of all in-trees rooted at the given root r ∈ V . However, the

number of in-trees in T ∗ can be exponentially large, and it is difficult in practice to

handle all of them. We therefore consider a subset T ⊆ T ∗ of in-trees and deal with

the following problem:

P (T ) maximize
∑
j∈T

xj ,

subject to
∑
j∈T

aijxj ≤ bi, ∀i ∈ V,

xj ≥ 0, xj ∈ Z, ∀j ∈ T.

If T = T ∗, the problem P (T ∗) is equivalent to the original problem (3). We denote the

optimal value of P (T ) by OPTP (T ).

We also consider the LP relaxation problem of P (T ), which is formally described as

follows:

LP (T ) maximize
∑
j∈T

xj ,

subject to
∑
j∈T

aijxj ≤ bi, ∀i ∈ V,

xj ≥ 0, ∀j ∈ T.

When T = T ∗, the problem LP (T ∗) is the LP relaxation of the original problem (3).

We denote the optimal value of LP (T ) by OPTLP (T ).

In general, �OPTLP (T )	 (where �x	 stands for the floor function of x) gives an up-

per bound of OPTP (T ) because OPTP (T ) is an integer. Note that if T 
= T ∗, then

OPTLP (T ) is not necessarily an upper bound of OPTP (T∗). For convenience, denote

the vector of variables xj for all j ∈ T by (xj | j ∈ T ). Then, for any feasible solution

(xj | j ∈ T ) of LP (T ), (�xj	 | j ∈ T ) is a feasible solution of P (T ∗) and its objective

value is a lower bound of OPTP (T∗).

3. In-trees Generating Algorithm

3.1 Pricing problem

We employ the delayed column generation method to generate candidate in-trees to

be packed. It starts from an arbitrary set T ⊆ T ∗, and repeatedly augments the set

T until some stopping criterion is satisfied. To apply the delayed column generation

method, we consider the following dual of the LP relaxation problem LP (T ):

D(T ) minimize
∑
i∈V

biλi,

subject to
∑
i∈V

aijλi ≥ 1, ∀j ∈ T,

λi ≥ 0, ∀i ∈ V.

When T = T ∗, the problem D(T ∗) is the dual of the LP relaxation problem LP (T ∗).

Thus, the pricing problem of LP (T ) is defined as the problem of finding an in-tree

τ ∈ T ∗ \ T that satisfies ∑
i∈V

aiτλ∗
i < 1, (4)

where (λ∗
i | i ∈ V ) is an optimal dual solution of the problem with the current T . If

there is no in-tree which satisfies condition (4), then the optimal value of the problem

LP (T ) cannot be improved any more. On the other hand, if condition (4) is satisfied

by a certain in-tree τ ∈ T ∗ \ T , then the optimal value of the problem LP (T ) can be

improved by adding the in-tree τ into T .

Let Ej be the set of all edges in each in-tree j ∈ T ∗, and φ(vw) := λ∗
vt(vw)+λ∗

wh(vw)

be the cost of each edge vw ∈ E. Defining aiτ as in equation (1), it is possible to trans-

form the left-hand side of (4) as follows:

∑
i∈V

aiτλ∗
i =

∑
i∈V

λ∗
i

⎧⎨
⎩

∑
e∈δ+

τ (i)

t(e) +
∑

e∈δ−τ (i)

h(e)

⎫⎬
⎭

=
∑

vw∈Eτ

{λ∗
vt(vw) + λ∗

wh(vw)}

=
∑

vw∈Eτ

φ(vw). (5)

Thereby, after calculating the minimum value of equation (5), we know if there is a
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possibility of improving the optimal value of problem LP (T ) by adding an in-tree τ .

Given the costs of edges φ(vw), the problem of finding an in-tree that minimizes the

total cost
∑

vw∈Eτ
φ(vw) is called the minimum weight rooted arborescence problem.

We therefore can solve the pricing problem by solving the minimum weight rooted ar-

borescence problem. Note that an arborescence is usually defined as an out-tree, but

the direction of the rooted tree does not make any essential difference to this problem.

The minimum weight rooted arborescence problem takes as inputs a directed graph

G = (V, E), a root node r ∈ V and an edge cost function φ : E → R. The problem

consists of finding a rooted arborescence with minimum total edge cost. The prob-

lem can be solved in O(|E||V |) time by Edmonds’ algorithm4). Bock1) and Chu and

Liu3) obtained similar results. Gabow et al.6) presented the best results so far with an

algorithm of time complexity O(|E| + |V | log |V |), which uses Fibonacci heap.

In each iteration of the in-tree generation phase of our algorithm, an in-tree τ that

minimizes the left-hand side of (4) is computed and is added into T provided that it

satisfies (4).

3.2 Stopping criteria of the delayed column generation method

In this subsection, we consider the stopping criteria of the delayed column gener-

ation method. The following theorem shows that we can obtain an upper bound of

OPTLP (T∗) at each iteration of the delayed column generation method.

Theorem 1 Let λ̂i ≥ 0 be real numbers for i ∈ V and α = minj∈T∗
{∑

i∈V
aij λ̂i

}
.

If α > 0 holds, then
∑

i∈V
bi(λ̂i/α) is an upper bound of OPTLP (T∗).

Proof: Let OPTLP (T∗) (resp., OPTD(T∗)) be the optimal value of the problem LP (T ∗)

(resp., D(T ∗)). From the duality theorem, OPTLP (T∗) = OPTD(T∗). By the definition

of α (> 0),
∑

i∈V
aij λ̂i ≥ α holds for all j ∈ T ∗, which is equivalent with∑

i∈V

aij(λ̂i/α) ≥ 1, ∀j ∈ T ∗.

Thus, (λ̂i/α | i ∈ V ) is a feasible solution of the problem D(T ∗) and its objective value

w =
∑

i∈V
bi(λ̂i/α) satisfies OPTD(T∗) ≤ w. Hence we have OPTLP (T∗) ≤ w. �

Theorem 1 implies that we can obtain an upper bound of OPTP (T∗) at each iteration

of the delayed column generation method. Furthermore, �∑
i∈V

bi(λ
∗
i /α)	 is an upper

bound of OPTP (T∗) because �OPTLP (T )	 gives an upper bound of OPTP (T ) for any

T ⊆ T ∗. Note that

OPTLP (T ) ≤ OPTLP (T∗) ≤
OPTLP (T )

α
always holds, where OPTLP (T ) = OPTD(T ) =

∑
i∈V

biλ
∗
i . Thus, we can obtain

�OPTLP (T∗)	 even without executing the delayed column generation method until the

end (i.e., until there is no tree τ ∈ T ∗ that satisfies (4)), provided that

�OPTLP (T )/α	 ≤ OPTLP (T ). (6)

We employ condition (6) as one of the stopping criteria of our delayed column generation

method.

If only condition (6) is employed and OPTLP (T ) is large, then there is a possibility

that the delayed column generation method generates a lot of in-trees. Thus, we employ

an additional condition
OPTLP (T )/α − OPTLP (T )

OPTLP (T )
≤ ε,

which is equivalent with

α ≥ 1

1 + ε
, (7)

where ε ≥ 0 is a parameter that represents the accuracy of the obtained upper bound

OPTLP (T )/α against OPTLP (T∗). In the computational experiments in Section 5, we

set ε := 0.0001. We observed through preliminary computational experiments that even

if the delayed column generation method was stopped by conditions (6) or (7), good

solutions for P (T ∗) were obtained, which implies that the set of in-trees generated un-

til one of these conditions is satisfied seems to be sufficient for obtaining high quality

solutions to P (T ∗).

3.3 Initial set of in-trees

The delayed column generation method can be executed even with only one initial

in-tree. However, we observed through preliminary experiments that the computation

time was usually reduced if an initial set with more in-trees was given. We also noticed

that for randomly generated in-trees the computation time did not decrease so much

when we increase the number of in-trees in the initial set beyond |V |. We therefore

employ |V | randomly generated in-trees as the initial set of in-trees.
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Imahori et al.9) proved that finding one packed in-tree that satisfies the node capac-

ity restriction (2) is NP-hard. Consequently, it is difficult to create an initial set of

in-trees for it and hence we dealt only with problems with t(e) � bi, ∀e ∈ δ+(i) and

h(e) � bi, ∀e ∈ δ−(i) for all i ∈ V .

3.4 Proposed algorithm to generate in-trees

The algorithm to generate in-trees based on the delayed column generation approach,

which we call GenInTrees, is formally described as follows:

Algorithm GenInTrees

Input a graph G = (V, E), a root node r ∈ V , tail and head consumption functions

on edges t : E → R+, h : E → R+, node capacities bi ∈ R+ for all i ∈ V and a

parameter ε.

Output a set of in-trees T , an upper bound �OPTLP (T )/α	 and a lower bound∑
j∈T

�xmax
j 	.

( 1 ) Create the initial set T0 of |V | in-trees randomly. Set T := T0 and xmax
j := 0 for

all j ∈ T .

( 2 ) Solve the problem LP (T ). Let OPTLP (T ) be the optimal value, (x∗
j | j ∈ T ) be

the obtained optimal solution and (λ∗
i | i ∈ V ) be the corresponding optimal

dual solution.

( 3 ) If
∑

j∈T
�x∗

j 	 >
∑

j∈T
�xmax

j 	 holds, then set xmax
j := x∗

j for all j ∈ T .

( 4 ) After setting the edge costs φ(vw) := λ∗
vt(vw)+λ∗

wh(vw) for all vw ∈ E, execute

Edmonds’ algorithm. Let τ be the in-tree with minimum total cost and α be its

cost.

( 5 ) If �OPTLP (T )/α	 ≤ OPTLP (T ) or α ≥ 1/(1 + ε) holds, then output the set of

in-trees T , the upper bound �OPTLP (T )/α	, the lower bound
∑

j∈T
�xmax

j 	 and

stop. Else set T := T ∪ {τ} and return to Step 2.

4. In-trees Packing Algorithm

4.1 Evaluation criteria of in-trees

The GenInTrees algorithm could generate in-trees to obtain high quality solutions of

P (T ∗). In this subsection, we propose a greedy algorithm to pack the in-trees enumer-

ated by the GenInTrees algorithm. We use the maximum packing number, calculated

based on the available capacity in each node, as the evaluation criterion of each in-

tree. Let (xj | j ∈ T ) be the current feasible solution of P (T ∗). The current available

capacity in each node i ∈ V is defined as

b̄i = bi −
∑
j∈T

aijxj . (8)

Then the maximum packing number Δj of each in-tree j ∈ T is calculated as follows:

Δj = min
i∈V

⌊
b̄i

aij

⌋
. (9)

In each iteration of our greedy algorithm, an in-tree j ∈ T that maximizes Δj is chosen

and the value of xj is increased. Let j∗ ∈ T be an in-tree with the highest Δj among

all j ∈ T . A simple approach to decide the amount of increment is to use the value of

Δj∗ (i.e., xj∗ := xj∗ + Δj∗); however, this approach does not give good solutions for

P (T ∗). The available capacities b̄i on the nodes are decreased as the packing number

xj∗ of the in-tree j∗ ∈ T is increased, and the amount of decrement of Δj is different

among in-trees. Thus, we employ an approach in which the in-tree with the highest Δj

is packed while its Δj value is the highest.

For any in-tree j ∈ T \ {j∗}, we define qj as the minimum value such that after

increasing xj∗ by qj , the resulting Δj∗ becomes smaller than the resulting Δj . Such a

value of qj must satisfy the following condition for all i ∈ V :⌊
b̄i − aij∗qj

aij

⌋
> Δj∗ − qj . (10)

Because we use qj as the value to increase the packing number xj∗ of in-tree j∗, it has

to satisfy

0 ≤ qj ≤ Δj∗ . (11)

The right-hand side of (10) is an integer and hence the condition (10) is equivalent to
b̄i − aij∗qj

aij
− 1 ≥ Δj∗ − qj . (12)

Let x� be the ceiling function of x. Condition (12) is satisfied for all i ∈ V if and only
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if ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⌊
b̄i − aij(Δj∗ + 1)

aij∗ − aij

⌋
≥ qj , (aij∗ > aij), (13)⌈

aij(Δj∗ + 1) − b̄i

aij − aij∗

⌉
≤ qj , (aij∗ < aij), (14)⌊

b̄i

aij

⌋
≥ Δj∗ , (aij∗ = aij), (15)

are satisfied for all i ∈ V . Let Qj ⊆ Z be the set of all integer values of qj that

satisfy (11), (13) and (14) for all i ∈ V . If Qj = ∅ holds or condition (15) is not

satisfied for some i ∈ V , then Δj never becomes higher than Δj∗ (in this case, we

assume qj = +∞ for convenience). Otherwise, Δj becomes higher than Δj∗ by in-

creasing xj∗ by qj = min{Qj}. Hence, if we increase the value of xj∗ by q, where

q = minj∈T\{j∗}{qj}, Δj becomes higher than Δj∗ for some j ∈ T \ {j∗}.
4.2 Efficient data structure

It is necessary to recalculate Δj and qj for all in-trees whenever an in-tree j∗ with the

highest Δj among all j ∈ T is packed. We propose an efficient method to recalculate

these values, which eliminates unnecessary recalculation by maintaining a sorted array

such that its elements are upper bounds of Δj .

Let D be an array with |T | elements sorted in non-increasing order and jk ∈ T be the

index of the tree corresponding to the kth cell of D. This array is maintained so that

it satisfies Δjk ≤ D[k] for all k ∈ {1, . . . , |T |} and Δj1 = D[1]. Then the in-tree j1 has

the highest Δj among all j ∈ T .

The algorithm calculates the values of qjk for k = 2, 3, . . . in this order, by conditions

(11), (13), (14) and (15). Assume that the values of qjk are calculated until the element

in the k′th position. We define qmin
jk′ as the minimum value of qjk among the ones cal-

culated, i.e., qmin
jk′ = mink∈[2,k′] qjk . Hence, if we increase the value of xj1 by qmin

jk′ , there

is at lease one in-tree whose Δjk becomes higher than Δj1 among the ones calculated

(provided that qmin
jk′ is finite). Then, suppose

D[k′ + 1] ≤ Δj1 − qmin
jk′ . (16)

Because D is sorted, D[k] ≤ Δj1−qmin
jk′ holds for all k ≥ k′+1. By definition, Δjk ≤ D[k]

holds for all k ∈ {1, . . . , |T |} and the value of Δjk never increases for all k when xj1

is increased. Hence, for all k ≥ k′ + 1, Δjk does not exceed Δj1 unless the increment

in xj1 is bigger then qmin
jk′ , which implies qjk > qmin

jk′ . Therefore, if condition (16) is

satisfied, qmin
jk′ = q = minj∈T\{j∗} qj holds, and hence it is not necessary to calculate

qjk for all k ≥ k′ + 1. Then the value of xj1 is increased by q and the values of b̄i are

updated for all i ∈ V by recomputing them by (8).

We can reduce the computational effort to update Δjk for all k ∈ {1, . . . , |T |} by

using a similar idea to the one for calculating q. For k = 1, 2, . . . in this order, the

algorithm calculates Δjk by (9). We denote the new value of Δjk by Δ̄jk . Assume that

the values of Δ̄jk are calculated until the element in the k′′th position. We define Δ̄min
jk′′

as the minimum value of Δ̄jk among the ones calculated, i.e., Δ̄min
jk′′ = mink∈[1,k′′] Δ̄jk .

Suppose

D[k′′ + 1] < Δ̄min
jk′′ . (17)

Because D is sorted, D[k] < Δ̄min
jk′′ holds for all k ≥ k′′ + 1. Then the algorithm

stops recalculating Δjk , and for k = 1, 2, . . . , k′′, it updates D[k] with the recom-

puted value Δ̄jk (i.e., D[k] := Δ̄jk). Afterwards, it sorts the first k′′ elements of D

in the non-increasing order. The resulting array D is sorted in the whole range (i.e.,

D[1] ≥ D[2] ≥ · · · ≥ D[|T |] holds), and it satisfies Δ̄jk ≤ D[k] for all k ∈ {1, . . . , |T |}
and Δ̄j1 = D[1], since we have Δ̄jk ≤ Δjk .

4.3 Proposed algorithm to pack in-trees

This section summarizes the greedy algorithm proposed in Section 4.1, together with

the data structure in Section 4.2. We call the algorithm PackInTrees, which is for-

mally described as follows.

Algorithm PackInTrees

Input a problem instance of P (T ) and a feasible solution (x
(0)
j | j ∈ T ) of P (T ).

Output a feasible solution (xj | j ∈ T ) of P (T ).

( 1 ) Set xj := x
(0)
j for all j ∈ T and calculate available capacities b̄i for all i ∈ V by

(8).

( 2 ) Calculate the evaluation criteria Δj for all j ∈ T by 8 and set D[j] := Δj .

( 3 ) Sort D in the non-increasing order, and let jk ∈ T be the index of the tree corre-

sponding to the kth cell of D, i.e., D[k] = Δjk holds for all k ∈ {1, . . . , |T |}, and

Δj1 ≥ Δj2 ≥ · · · ≥ Δj|T | is satisfied.
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( 4 ) Set qmin := D[1] and k := 2.

( 5 ) Let Qjk ⊆ Z be the set of all integer values of qjk that satisfy (11), (13) and (14)

with j = jk for all i ∈ V . If Qjk 
= ∅ and qjk = min{Qjk} < qmin are satisfied

and (15) holds for all i ∈ V , then set qmin := qjk .

( 6 ) If k = |T |, then go to Step 8.

( 7 ) If D[k + 1] > D[1] − qmin, then set k := k + 1 and return to Step 5.

( 8 ) Set xj1 := xj1 + qmin. Recalculate available capacities b̄i for all i ∈ V by 8.

( 9 ) Set Δmin := D[1] and k := 1.

( 10 ) Recalculate Δjk by (9) and set D[k] := Δjk . If Δjk < Δmin, then set

Δmin := Δjk .

( 11 ) If k = |T |, then go to Step 13.

( 12 ) If D[k + 1] ≥ Δmin, then set k := k + 1 and return to Step 10.

( 13 ) Sort the first k elements of D in the non-increasing order, and modify jk̂ (k̂ ∈
{1, . . . , k}) accordingly.

( 14 ) If D[1] = 0, then output the feasible solution (xj | j ∈ T ) and stop; otherwise,

return to Step 4.

One iteration of the PackInTrees algorithm consists of calculating qmin and Δmin

and sorting D. Its worst case time complexity is O(|V ||T | + |T | log |T |). Let k′ be the

value of k in Step 8 and k′′ be the value of k in Step 13. It is not hard to show that

k′′ ≥ k′ holds, and by using these parameters, the actual time complexity becomes

O(|V |(k′ + k′′) + k′′ log k′′) = O(k′′(|V | + log k′′)), which is usually much smaller than

the worst-case complexity because k′′ � |T | holds in many cases. In each iteration, at

least one in-tree is packed and hence the maximum number of iterations is OPTLP (T∗).

Hence, the whole algorithm runs in O(OPTLP (T∗)(|V ||T | + |T | log |T |)) time.

We set an initial feasible solution (x
(0)
j | j ∈ T ) as an input for the PackInTrees

algorithm. We observed through preliminary experiments that if we set x
(0)
j := 0 for

all j ∈ T , the PackInTrees algorithm does not output good solutions. On the other

hand, good solutions are found by setting the solution obtained by the GenInTrees

algorithm, (xmax
j | j ∈ T ), as the initial feasible solution. Thus, we employ this solution

as the initial feasible one for the PackInTrees algorithm.

5. Computational Experiments

5.1 Problem instances

We use two types of instances in our experiment. The first one is based on sensor

location data used by Heinzelman et al.8) and Sasaki et al.12) in their papers about

sensor networks. From their data, we generated complete graphs with symmetric tail

and head consumption functions and node capacities, where the consumption functions

are equivalent to the amount of energy consumed to transmit and receive packets, and

node capacities are equivalent to the capacities of sensor batteries in their papers. We

call the instances hcb100, sfis100-1, sfis100-2 and sfis100-3, where hcb100 is the instance

generated using the sensor location data in 8), and sfis100-1, 2 and 3 are the instances

generated using the sensor location data called data1, 2 and 3, respectively, in 12).

The second type consists of random graphs whose out-degrees are distributed in a

small range. We named them as “rndn-dmin-dmax,” where n is the number of nodes,

dmin is the minimum out-degree, and dmax is the maximum out-degree. Three problem

instances were generated, which are rnd100-5-10, rnd100-30-50 and rnd200-5-10. Tail

and head consumptions for these instances were randomly chosen from the integers in

the intervals [10, 50] and [1, 5], respectively, for all edges except that the tail consump-

tion of edges entering the root node r were randomly chosen from the integers in the

intervals [100, 500] so that these edges cannot be used frequently. Node capacities were

set to 100,000 for all i ∈ V \ {r} and +∞ for the root node r.

The algorithms were coded in the C++ language and ran on a Dell Precision 470

(Xeon (NetBurst) 3GHz, 2MB cache, 1GB memory). We used the primal simplex

method in GLPK4.34�1 as LP solver.

We compare the solutions obtained by the proposed algorithm with the ones obtained

by the algorithm in 12). Note that their algorithm keeps sending packets even though

the base station does not receive packets from all sensors, where this situation happens

only if there exists at least one sensor whose battery has run out, and they reported

�1 GLPK-GNU Project-Free Software Foundation (FSF), http://www.gnu.org/software/glpk/, 16,

Feb, 2009.
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Fig. 1 Behavior of the GenInTrees algorithm applied to sfis100-1

the number of times packets are sent (which they call rounds) for several values of the

number of available sensors. Among such results, we use the number of rounds when all

sensors are available, because in this paper we consider the number of spanning in-trees,

which corresponds to the number of times packets are sent from all the sensors.

5.2 Experimental results

Figure 1 represents the behavior of GenInTrees algorithm applied to sfis100-1. The

figure shows the improvement of OPTLP (T ) and of the best values of the upper and

lower bounds of P (T ∗) as in-trees are added to T in each iteration. Along with this

improvement, the difference between the upper and lower bounds becomes smaller and

the ratios of improvement decrease. In general, this tendency is often observed when

applying the delayed column generation method. After a certain number of iterations,

we can affirm we obtained good upper and lower bounds.

Table 1 shows the results of the proposed algorithm for the problem instances ex-

plained in Section 5.1. The first three columns represent instance names, number of

nodes (without a root node) |V \ {r}|, and number of edges |E|. Column |T | shows the

number of in-trees generated by algorithm GenInTrees, and columns UB and LB show

the upper and lower bounds of OPTP (T∗), respectively, computed by GenInTrees. The

following columns represent objective values, denoted “Obj.,” gaps in % between UB

and Obj., i.e., ((UB − Obj.)/UB) × 100, and computation times in seconds of the pro-

posed algorithm. The number of rounds reported in .12), which are equivalent to the

number of packed in-trees, is also shown for comparison purposes, where a mark “–”

means that the result is not available.

The results presented in the table show our algorithm obtains better results than

Sasaki et al. The gaps between upper bounds and objective values are quite small,

indicating that the obtained solutions are close to OPTP (T∗). Instance rnd200-5-10 is

the only one with 200 nodes and although the number of edges is not much bigger than

other instances, the computation time is at least 10 times bigger except for hcb100.

Thus, the computational effort increases rapidly when the number of nodes increases.

One of the reasons for this behavior is the increase of the computational effort of the

LP solver.

6. Conclusions

In this paper, we proposed a two-phase heuristic algorithm for the node capacitated

in-tree packing problem. In the first phase, it generates candidate in-trees to be packed

employing the delayed column generation method for the LP-relaxation of the prob-

lem. We showed that solving the pricing problem is equivalent to solving the minimum

weight rooted arborescence problem. In the second phase, the algorithm computes the

packing number of each in-tree by first modifying feasible solutions of the LP-relaxation

problem and then improving them with a greedy algorithm. We proposed an efficient

data structure that makes use of the properties of the evaluation criteria. The proposed

algorithm obtains solutions that are close to the upper bounds and is proved to be

effective for this problem.
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