
IPSJ SIG Technical Report

Loosely-stabilizing Leader Election

in Population Protocol Model

Yuichi Sudo ,†1 Junya Nakamura ,†1

Yukiko Yamauchi ,†2 Fukuhito Ooshita ,†1

Hirotsugu Kakugawa †1 and Toshimitsu Masuzawa †1

A self-stabilizing protocol guarantees that, starting from an arbitrary ini-
tial configuration, a system eventually comes to satisfy its specification and
keeps the specification forever. Although self-stabilizing protocols show excel-
lent fault-tolerance against any transient faults (e.g. memory crash), designing
self-stabilizing protocols is difficult and, what is worse, might be impossible
due to the severe requirements. To circumvent the difficulty and impossi-
bility, we introduce in this paper a novel notion of loose-stabilization. The
loose-stabilization relaxes the closure requirement; starting from an arbitrary
configuration, a system comes to satisfy its specification in a relatively short
time, and it keeps the specification for a long time, though not forever. To
show effectiveness and feasibility of the new concept, we present a probabilistic
loosely-stabilizing leader election protocol in the Probabilistic Population Pro-
tocol (PPP) model of complete networks. The protocol elects a unique leader
within O(nN log n) expected steps starting from any configuration, and keeps
the unique leader for Ω(NeN) expected steps, where n is the network size (not
known to the protocol) and N is a known upper bound of n. This result proves
that introduction of the loose-stabilization circumvents the already-known im-
possibility result; the self-stabilizing leader election in the PPP model of com-
plete networks cannot be solved without knowledge on the exact network size.

1. Introduction

A distributed system is a collection of autonomous computational entities (pro-
cesses) connected by communication links. Fault tolerance of distributed systems
has attracted more and more attention since distributed systems are prone to
faults. A self-stabilizing system6) has a desirable property that, even when any

†1 Graduate School of Information Science and Technology, Osaka University
†2 Graduate School of Information Science, Nara Institute of Science and Technology

transient fault (e.g. memory crash at processes) hits the system, it can au-
tonomously recover from that fault. The notion of self-stabilization is described
as follows: (i) starting from an arbitrary initial configuration, a system eventu-
ally reaches a safe configuration (convergence), and (ii) once a system reaches a
safe configuration, then it keeps its specification forever (closure). Although self-
stabilizing systems provide excellent fault-tolerance as mentioned above, design-
ing self-stabilizing protocols is difficult and, what is worse, might be impossible
due to the severe requirements.

To circumvent this difficulty and impossibility, many researchers have tried
to relax the severe requirement of self-stabilization and proposed the following
variants. Probabilistic self-stabilization8) guarantees convergence to a safe con-
figuration with probability 1 starting from an arbitrary configuration. Quasi-
stabilization9) guarantees convergence to a safe configuration only when all
processes in the system start with the program counters of value 0. Weak-
stabilization7) guarantees that starting from an arbitrary configuration there ex-
ists an execution that reaches a safe configuration. Devismes et al.5) investigated
the relations among self, probabilistic and weak stabilization. A notable charac-
teristic common to all the above variants is that they relax only the convergence
requirement but not the closure requirement of self-stabilization.

In this paper, we adopt Probabilistic Population Protocol (PPP) model1),2)

as a distributed system model. The population protocol model1) is one of ab-
stractions that represent wireless sensor networks consisting of mobile sensing
devices. In this model, two devices communicate with each other only when they
come sufficiently close to each other (we call this event an interaction). For ex-
ample, population protocol model can represent a flock of birds such that each
bird is equipped with a sensing device of small transmission range. In such a
sensor network, each device can communicate with another device only when
the corresponding birds come sufficiently close to each other. The PPP model
is a population protocol model with the assumption that any interaction occurs
uniformly at random.

Our contribution. To circumvent difficulty and impossibility in designing
self-stabilizing protocols, we introduce a novel notion of loose-stabilization, which
relaxes the closure requirement of self-stabilization. To the best of our knowledge,

1 c© 2009 Information Processing Society of Japan

Vol.2009-AL-124 No.5
2009/5/11

IPSJ SIG Technical Report

this is the first trial to relax the closure requirement and not the convergence re-
quirement. Intuitively, the notion of loose-stabilization is described as follows:
(i) starting from an arbitrary configuration, a system reaches a loosely-safe con-
figuration within a short time (convergence), and (ii) once a system reaches a
loosely-safe configuration, then it keeps its specification for a long time (loose-
closure). In other words, we relax the closure requirement by allowing a system
to deviate from its specification even after a loosely-safe configuration but only
after a long period satisfying the specification. The requirement of fast con-
vergence is added to guarantee that most of the system running time should
satisfy the specification. Actually, the loose-stabilization is practically equiva-
lent to self-stabilization if the specification is kept for a significantly long time
(e.g. exponential order with the network size) after the loosely-safe configuration.

Several definitions with the above notion can be formulated, and in this paper,
we give a concrete definition of probabilistic loose-stabilization, which ensures
the fast convergence and the long period satisfying the specification in terms of
expected time.

To show effectiveness and feasibility of the loose-stabilization, we present a
probabilistic loosely-stabilizing leader election protocol in the PPP model of com-
plete networks. The protocol assumes that each device knows an upper bound,
say N , of the network size. Starting from any configuration, the protocol elects
a unique leader within O(nN log n) expected steps, and then, keeps the unique
leader for Ω(NeN) expected steps where n is the actual network size. This result
discloses an evidence that introduction of the loose-stabilization can circumvent
impossibility results on self-stabilization; the self-stabilizing leader election in
the PPP model of complete networks cannot be solved even in a probabilistic
way without knowledge of the exact network size4). The proposed protocol uses
O(log N) space per device while prior papers on population protocols usually
do not allow each device to use more than constant space (with respect to n).
However, the importance of our protocol is never impaired by this fact because
the above impossibility holds even if each device can use infinite space.

2. Preliminaries

In this section, we show the definition of probabilistic population protocol

model and define the concept of probabilistic loose-stabilization. We use some
definitions in 1), 3).

A population consists of a collection of finite state sensing devices called agents.
Each agent has its own state and updates the state by communication with other
agents in pairs, called interactions. We represent a population by simple directed
graph G(V,E): V = {0, 1, . . . , n− 1} (n ≥ 2) is a set of agents and E ⊆ V ×V is
a set of possible interactions. If (u, v) ∈ E, agents u and v can interact with each
other in such a way that u serves as an initiator and v serves as a responder.
In this paper, we assume that a population G(V,E) is a complete graph, i.e.,
(u, v) ∈ E for any distinct agents u, v ∈ V .

A protocol P (Q,Y,O, δ) consists of a finite set of states Q, a finite set of output
symbols Y , an output function O : Q → Y , and a transition function δ : Q×Q →
Q×Q. The output of an agent is determined by O: when the state of an agent is
p ∈ Q, the output of the agent is O(p). When an interaction between two agents
happens, δ determines the next states of the two agents after the interaction. For
agent u with state p and agent v with state q, δ(p, q) = (p′, q′) represents that
the states of u and v after the interaction (u, v) are p′ and q′ respectively.

A configuration is a mapping C : V → Q that specifies the states of all agents in
a population. The output of a configuration C is defined as a composite function
O ◦C : V → Y , denoted by O(C). Let C and D be configurations, and let u and
v be distinct agents. We say that C changes to D by an interaction r = (u, v),
denoted by C

r→ D, if we have (D(u), D(v)) = δ(C(u), C(v)) and D(w) = C(w)
for all w ∈ V except u and v.?1 We denote by Call(P) the set of all configurations
of P .

An interaction sequence γ = (u0, v0), (u1, v1), . . . is an infinite sequence of
interactions. For each t ≥ 0, we denote ut and vt by γ1(t) and γ2(t) respectively,
and denote (ut, vt) by γ(t). We call γ(t) the interaction at time t in γ. We say
that agent v joins in interaction γ(t) when v ∈ {γ1(t), γ2(t)}.

Given an interaction sequence γ and an initial configuration C0, the execution
ΞP (C0, γ) of a protocol P is uniquely defined as ΞP (C0, γ) = C0, C1, . . . s.t. ∀t ≥

?1 This definition implies that interactions between two agents happen sequentially, that is,
exactly one pair of agents interact at any time.

2 c© 2009 Information Processing Society of Japan

Vol.2009-AL-124 No.5
2009/5/11

IPSJ SIG Technical Report

0, Ct
γ(t)→ Ct+1.

A scheduler determines which interaction happens at each time t (t ≥ 0). In this
paper, we consider a uniformly random scheduler: the interaction at each time
is chosen at random, independently and uniformly from all possible interactions.
We represent the choice of this scheduler by the interaction sequence Γ: each
Γ(t) is a random variable such that Pr(Γ(t) = (u, v)) = 1

|E| for any arbitrary
interactions (u, v) ∈ E and for any integer t ≥ 0.

2.1 Behavior
In this section, we define behavior to describe the specification of a problem.

A trace T on population G(V,E) is a finite or infinite sequence of assignments
from V to Z, where Z is a set of symbols. We call Z the alphabet of T . If Z = Q

for protocol P (Q,Y,O, δ) then we say that T is a configuration trace of P .?1 Let
T = C0, C1, . . . be a finite or infinite configuration trace of P . The output trace
of T for P is OTP (T) = O(C0), O(C1),

For a finite trace T = λ0, λ1, . . . , λl−1, we define the length of T as |T | = l. For
an infinite trace T ′, we define |T ′| = ∞. Let T = λ0, λ1, . . . be a finite or infinite
trace. The sub-trace Tx,y (0 ≤ x ≤ y ≤ |T | − 1) ?2 is a sequence of assignments
Tx,y = λx, λx+1, . . . , λy. The prefix of T , T0,l (0 ≤ l ≤ |T | − 1) is denoted by
Tpre(l).

A behavior B(Z) on population G(V,E) is a set of traces on G that have an
identical alphabet Z. (We use the notation B if Z is clear from context.) We
define a problem as a behavior that specifies the set of all legitimate output
traces for the problem. Let B(Y) be a behavior and let T be a configuration
trace of P (Q, Y,O, δ). Trace T is legitimate for the problem defined by B iff
OTP (T) ∈ B. We say that a behavior B is canonical if Tx,y ∈ B for any trace
T ∈ B and any x, y (0 ≤ x ≤ y < |T |).

Definition 1 (Leader Election Problem) We denote by le the set of all
assignment ω : V → {F,L} such that for some vl ∈ V, ω(vl) = L and for
all v 6= vl, ω(v) = F . The leader election behavior LE ({F,L}) on population
G(V,E) is the set of all traces T = ω, ω, . . . (1 ≤ |T | ≤ ∞) such that ω belongs
to le.

?2 Note that y can be ∞ if |T | = ∞.

Informally, LE requires that any legitimate execution of a protocol for leader
election has one static leader agent with the output symbol L and n − 1 non-
leader (follower) agents with the output symbol F through its all configuration.
Clearly, LE is canonical.

2.2 Probabilistic Loose-stabilization
In this section, we define the notion of probabilistic loose-stabilization.
Let P (Q,Y,O, δ) be a protocol and B(Y) be a canonical behavior. Let T =

D0, D1, . . . be a finite or infinite configuration trace of P . If there exists an
integer t (t ≥ 0) such that OTP (Tpre(t)) ∈ B and OTP (Tpre(t + 1)) /∈ B, the
maintenance trace MTP (T,B) is defined by Tpre(t). If such t does not exist,
we define MTP (T,B) as follows: if OT (Tpre(0)) ∈ B then MTP (T,B) = T ,
otherwise MTP (T,B) = ε, where ε is the empty trace (|ε| = 0). Let C0 be
a configuration of P . We denote E[|MTP (ΞP (C0,Γ), B)|] by EMTP (C0, B).
Intuitively, when an execution of P starts from C0, the execution satisfies the
specification defined by B during EMTP (C0, B) expected interactions.

Let C be a set of configurations of P . If there exists an integer t such that Di /∈ C
for all i (i = 0, 1, . . . , t) and Dt+1 ∈ C, the convergence trace CTP (T, C) is defined
by Tpre(t). If such t does not exist, we define CTP (T, C) as follows: if D0 ∈ C then
CTP (T, C) = ε, otherwise CTP (T, C) = T . We denote E[|CTP (ΞP (C0, Γ), C)|]
by ECTP (C0, C). Intuitively, when an execution of P starts from C0, the execu-
tion reaches a configuration of C within ECTP (C0, C) expected interactions.

Definition 2 (Probabilistic Loose-stabilization) Let α and β be real
numbers. A protocol P (Q,Y,O, δ) is (α, β)-probabilistic loosely-stabilizing for
a canonical behavior B(Y) and a nonempty set of configurations S if the follow-
ing equations hold:

max
C∈Call(P)

ECTP (C,S) ≤ α,

min
C∈S

EMTP (C,B) ≥ β.

We say that a configuration C of P is a β-loosely-safe configuration for P and B

when EMTP (C,B) ≥ β. Clearly, S in the above definition consists of β-loosely-
safe configurations for P and B.

Intuitively, a (α, β)-probabilistic loosely-stabilizing protocol is quite useful if β

is sufficiently large (e.g. exponential order with n) and α is relatively small (e.g.

3 c© 2009 Information Processing Society of Japan

Vol.2009-AL-124 No.5
2009/5/11

IPSJ SIG Technical Report

R1. ((l, ∗), (l, ∗)) → ((l, s), (−, s))
R2. ((l, ∗), (−, ∗)) → ((l, s), (−, s))
R3. ((−, ∗), (l, ∗)) → ((−, s), (l, s))
R4. ((−, 0), (−, 0)) → ((l, s), (−, s))
R5. ((−, i), (−, j)) → ((−, f), (−, f))

(0 ≤ i, j ≤ s, f = max(i, j) − 1)

Fig. 1 the transition function δ of PLE

low polynomial order with n).

3. Probabilistic loosely-stabilizing Leader Election

3.1 The Proposed Protocol
In this section, we present a probabilistic loosely-stabilizing protocol

PLE (Q, {F,L}, O, δ) that solves the leader election problem with knowledge of
an upper bound N of the network size n. The protocol has a design parameter s

and becomes a probabilistic loosely-stabilizing protocol when s is adequately set
depending on N (Theorem 2).

Each agent has one leader bit and a timer that takes an integer value in [0, s],
i.e. Q = {−, l}×{0, 1, . . . , s}. We define the output function O as follows: if the
leader bit of an agent is l, then the output of the agent is L, otherwise F . We
call an agent with the leader bit l (−) a leader (non-leader, respectively). We
describe the transition function δ by pattern rules in Figure 1. Given any pair of
states (p, q), the pair of the next states δ(p, q) is defined as follows: (i) if (p, q)
matches the left side of exactly one rule, δ(p, q) is determined by the right side
of the rule, and (ii) if there are two or more matched rules, δ(p, q) is determined
by the right side of the matched rule with the smallest rule number. The symbol
∗ means “don’t care”, that is, ∗ matches any value of the timer. Note that this
five rules are collectively exhaustive.

If two leaders interact, one remains a leader and the other becomes a non-leader
(R1). If a leader and a non-leader interact, the leader bits of both the agents
do not change (R2, R3). In every interaction in which one or two leaders join,
the timers of both the agents are reset to the full value s (R1, R2, and R3). We

call this event timer reset. A new leader is created only when two non-leaders
with timer value 0 interact (R4). We call this event timeout. If two non-leaders
interact where either or both agents have non-zero timer, then at least one of
the two agents decrements its timer value by 1 (R5). R5 plays another role of
propagating the higher timer value: intuitively, when two non-leaders interact,
the timer of a lower value is set to the other (higher) value (minus 1).

In a configuration containing at least one leader, timeout rarely happens be-
cause of frequent occurrences of timer reset and propagations of high timer values.
On the other hand, in a configuration containing no leader, timeout happens in
a relatively short time because of no possibility of timer reset. Hence, starting
from any configuration, removing leaders by R1 or creating a leader by R4 even-
tually bring the system to a configuration with exactly one leader. The following
two properties hold clearly: (i) once a configuration with one or more leaders is
reached, the number of leaders cannot become 0 thereafter, and (ii) once a unique
leader is elected, PLE keeps the unique leader until the next timeout happens.

3.2 Epidemic and Virtual Agents
In this section, we introduce the notion of epidemic (presented in 2)) and virtual

agents for the proof in Section 3.3.
We define Lone as a set of configurations in which there exists exactly one

leader in the population. Let C0 be a configuration in Lone, and let vl ∈ V

be the unique leader in C0. Let γ be an interaction sequence. The epidemic
function IC0,γ(t) (t = 0, 1, . . .) that returns a set of agents is defined as follows:
IC0,γ(0) = {vl}, and IC0,γ(t) = IC0,γ(t − 1) ∩ AddC0,γ(t) for any t ≥ 1, where

AddC0,γ(t) =

{
{γ1(t − 1), γ2(t − 1)} if IC0,γ(t − 1) ∩ {γ1(t − 1), γ2(t − 1)}
∅ otherwise.

We say that, if v ∈ IC0,γ(t), v is infected at time t in the epidemic starting
from C0 under γ, otherwise v is infection-free at time t in that epidemic. At
time 0, only vl is infected, and an infection-free agent becomes infected when
it interacts with an infected agent. Once an agent becomes infected, it remains
infected thereafter.

In the following, we define the virtual agent VAC0,γ(v) of each agent v ∈ V . We
assume that all agents eventually become infected, that is, IC0,γ(t′) = V holds

4 c© 2009 Information Processing Society of Japan

Vol.2009-AL-124 No.5
2009/5/11

IPSJ SIG Technical Report

for some t′ ≥ 0. The virtual agent VAC0,γ(v) is not defined if no such t′ exists
for C0 and γ. Let v be any agent other than vl. The infected time TC0,γ(v) of
v is an integer i ≥ 0 that satisfies v /∈ IC0,γ(i) and v ∈ IC0,γ(i + 1). The parent
of v, denoted by PC0,γ(v), is the agent that infects v. It is formally defined as
agent u such that {u} = {γ1(TC0,γ(v)), γ2(TC0,γ(v))} \ {v}. We define agent
P k

C0,γ(v) (k ≥ 0) as follows: P 0
C0,γ(v) = v, and P k

C0,γ(v) = PC0,γ(P k−1
C0,γ(v)) for

k ≥ 1. Intuitively, P k
C0,γ(v) is v’s ancestor k generations back. Obviously, there

exists an integer m ≥ 0 such that Pm
C0,γ(v) = vl. For each 0 ≤ i ≤ m, let wi

be Pm−i
C0,γ (v). Note that w0 = vl and wm = v. The infecting path of v is defined

as vl = w0 → w1 → · · · → wm = v. Let ti (1 ≤ i ≤ m) be TC0,γ(wi). The
virtual agent VAC0,γ(v) is a virtual entity that migrates from vl to v through the
infecting path of v. This notion is formalized as the location of the virtual agent
LC0,γ(v, t) (t ≥ 0),which is defined as follows:

LC0,γ(v, t) =

vl (0 ≤ t ≤ t1)

wi (ti + 1 ≤ t ≤ ti+1, 1 ≤ i ≤ m − 1)

v (t ≥ tm + 1 = TC0,γ(v) + 1).

For the leader agent vl, we define LC0,γ(vl, t) = vl for any t ≥ 0.
Let v be an agent in V .?1 For simplicity, we denote the virtual agent

VAC0,γ(v) by v′ here. We say that the virtual agent v′ joins in interaction γ(t)
if agent LC0,γ(v, t) joins in γ(t), and we define indicator variable VJC0,γ(v, t)
for any t ≥ 0 as follows: if v′ joins in γ(t), then VJC0,γ(v, t) = 1, other-
wise VJC0,γ(v, t) = 0. The number of virtual interactions of v is defined as
VI C0,γ(v, t) =

∑t−1
i=0 VJC0,γ(v, i). Intuitively, VI C0,γ(v, t) is the number of in-

teractions in which v′ joins between time 0 and time t − 1.
In the rest of this section, we prove two lemmas. Informally, these two lemmas

assure that the virtual agent v′ brings an large timer value to v with high prob-
ability when v′ reaches v through the infecting path of v. For state p, we denote
the second element (timer) of p by p.time.

Lemma 1 Let C0 be a configuration in Lone and let γ be an interaction se-
quence. Let ΞPLE (C0, γ) = C0, C1, The following predicate holds for any

?1 Note that v can be vl.

agent v ∈ V and any t ≥ 0:
IC0,γ(t) = V ⇒ Ct(v).time ≥ s − VI C0,γ(v, t).

Proof Sketch. Assume IC0,γ(t) = V . Let vl be the unique leader in C0

and tfirst be the first time at which vl have interaction, i.e. tfirst = min{i ≥ 0 |
vl ∈ {γ1(i), γ2(i)}}. Then, it is easily shown by induction with respect to i that
Ci(LC0,γ(v, i)).time ≥ s−VI C0,γ(v, i) holds for any integer i ≥ tfirst +1 (we omit
the proof). Since IC0,γ(t) = V , t ≥ tfirst + 1 and v = LC0,γ(v, t) clearly hold.
Hence, we have Ct(v).time = Ct(LC0,γ(v, t)).time ≥ s − VI C0,γ(v, t). ¤
The following lemma probabilistically bounds the number of virtual interactions
of each agent by a certain binomial distribution. Recall that random variable
Γ is the interaction sequence that represents the choice of uniformly random
scheduler.

Lemma 2 Let C0 be a configuration in Lone and let X(i) be a binomial ran-
dom variable such that X(i) ∼ B(i, 4

n) for integer i ≥ 0. Pr(VI C0,Γ(v, t) ≥
j + n − 1 | IC0,Γ(t) = V) ≤ Pr(X(t) ≥ j) holds for any v ∈ V and any integers
t ≥ n and j ≥ 0.

Proof. Assume IC0,Γ(t) = V and let vl ∈ V be the unique leader in C0.
We define the infecting time set IT as

∪
v∈V \{vl}{TC0,Γ(v)}, and the non-

infecting time set NIT as {0, 1, . . . , t − 1} \ IT . Let v be any agent in V ,
and let NVI =

∑
t′∈NIT VJC0,Γ(v, t′). Since |IT | = n − 1, the inequality

VI C0,Γ(v, t) ≤ NVI + n − 1 immediately follows. Therefore, it is sufficient for
our proof to show Pr(NVI ≥ j | IC0,Γ(t) = V) ≤ Pr(X(t) ≥ j).
Let t′ be any integer in [0, t−1] and let m = |IC0,Γ(t′)|. If t′ ∈ NIT , the interaction
Γ(t′) must be an interaction such that both agents Γ1(t′) and Γ2(t′) belong to
IC0,Γ(t′) or both the agents belong to V \ IC0,Γ(t′). Thus, letting 0C2 = 1C2 = 0,
we have

Pr(VJC0,Γ(v, t′) = 1 | IC0,Γ(t) = V ∧ t′ ∈ NIT ∧ LC0,Γ(v, t′) ∈ IC0,Γ(t′))

=
m − 1

mC2 +n−m C2
,

Pr(VJC0,Γ(v, t′) = 1 | IC0,Γ(t) = V ∧ t′ ∈ NIT ∧ LC0,Γ(v, t′) /∈ IC0,Γ(t′))

=
n − m − 1

mC2 +n−m C2
.

These inequalities lead Pr(VJC0,Γ(v, t′) = 1 | IC0,Γ(t) = V ∧ t′ ∈ NIT) ≤ 4/n

5 c© 2009 Information Processing Society of Japan

Vol.2009-AL-124 No.5
2009/5/11

IPSJ SIG Technical Report

because m−1
mC2+n−mC2

≤ 4
n and n−m−1

mC2+n−mC2
≤ 4

n hold. Note that this upper bound
4/n of the probability is independent from the interaction at any time other than
t′. Hence, for any set S of t − n + 1 distinct integers in [0, t − 1], we have

Pr

(∑
t′∈NIT

VJC0,Γ(v, t′) ≥ j | IC0,Γ(t) = V ∧ NIT = S

)
≤ Pr(X(t − n + 1) ≥ j).

Therefore, following inequality holds and so does the lemma.

Pr(NVI ≥ j | IC0,Γ(t) = V) = Pr

(∑
t′∈NIT

VJC0,Γ(v, t′) ≥ j | IC0,Γ(t) = V

)
≤ Pr(X(t − n + 1) ≥ j)
≤ Pr(X(t) ≥ j).

¤
3.3 Analysis and Proofs
Assume that we set design parameter s so that s is multiple of 96 and

s ≥ max(3n, 96(2 lnn + ln 24)) holds. In this section, we prove that under this
assumption, PLE is (O(ns log n), Ω(ses/96))-probabilistic loosely-stabilizing for
behavior LE and Shalf, where Shalf is the set of all configurations in which there
exists exactly one leader and the timer value of every agent is greater than or
equal to s/2. To claim it, we prove the following two expressions:

max
C∈Call(PLE)

ECTPLE (C,Shalf) ∈ O(ns log n), (1)

min
C∈Shalf

EMTPLE
(C,LE) ∈ Ω

(
s · exp

(s

96

))
. (2)

First, we prove Expr.(2). In the following, we denote Call(PLE) by Call for sim-
plicity.

Lemma 3 Expr.(2) holds if the following equation holds for any configuration
C0 in Shalf :

Pr
(
(ΞPLE (C0, Γ))pre

(ns

48

)
∈ LE ∧ Cns

48
∈ Shalf

)
≥ 1 − 2n · exp

(
− s

96

)
, (3)

where ΞPLE (C0, Γ) = C0, C1, . . . , Cns
48

,
Proof. Assume that Expr.(3) holds for any configuration in Shalf. Then the

inequality EMTPLE (C0,LE) ≥ (1−2ne−s/96)(ns
48 +minC∈Shalf EMTPLE (C,LE)))

clearly holds for any configuration C0 ∈ Shalf. Hence, we have

min
C∈Shalf

EMTPLE (C,LE)

≥
(
1 − 2n · exp

(
− s

96

)) (
ns

48
+ min

C∈Shalf
EMTPLE (C,LE)

)
.

Solving this inequality gives us Expr.(2). ¤
In the following, we show that Expr.(3) holds for any configuration C0 ∈ Shalf.
Firstly, we prove the probability of Cns

48
∈ Shalf is sufficiently close to 1

(Lemma 4,5 and Corollary 1), and secondly, we prove that the probability of
(ΞPLE (C0, Γ))pre(ns

48) ∈ LE is sufficiently close to 1 (Lemma 6 and Corollary 2).
Lemma 4 Let C0 be a configuration in Lone. The following inequality holds:

Pr
(

max
v∈V

VI C0,Γ

(
v,

ns

48

)
≤ s

2
| IC0,Γ

(ns

48

)
= V

)
≥ 1 − n · exp

(
− s

36

)
. (4)

Proof. Applying Chernoff bounds, Pr(Y ≥ (1 + δ)E[Y]) ≤ exp(−δ2E[Y]/3)
holds for any binomial random variable Y and any real number δ (0 ≤ δ ≤ 1). (
See Expr.4.2 in 10).) Let X be an binomial variable such that X ∼ B(ns

48 , 4
n). It

follows from the above inequality that Pr(X ≥ s
6) ≤ exp(−s/36). Let v be any

agent. By Lemma 2 and the assumption s ≥ 3n, we have

Pr
(
VI C0,Γ

(
v,

ns

48

)
≥ s

2
| IC0,Γ

(ns

48

)
= V

)
≤ Pr

(
VI C0,Γ

(
v,

ns

48

)
≥ s

6
+ n − 1 | IC0,Γ

(ns

48

)
= V

)
∵ s

2
≥ s

6
+ n − 1

≤ Pr
(
X ≥ s

6

)
≤ exp

(
− s

36

)
.

We obtain (4) by summing up all above probabilities with respect to v ∈ V . ¤
Lemma 5 Pr(IC0,Γ

(
ns
48

)
= V) ≥ 1−n ·exp

(
− s

96

)
holds for any configuration

C0 in Lone.
Proof. For each k (2 ≤ k ≤ n), we define T (k) as integer t such that |IC0,Γ(t−

1)| = k − 1 and |IC0,Γ(t)| = k, and define T (1) = 0. Intuitively, T (k) is the first
time at which there exists k infected agents in the population. Let Xpre =
T (dn+1

2 e) and Xpost = T (n)− T (n− dn+1
2 e+ 1). Angluin et al. found in 2) that

T (k) and T (n) − T (n − k + 1) have the same probability distribution for any
k (1 ≤ k ≤ n). Hence, so do Xpre and Xpost. And, Xpre + Xpost ≥ T (n) holds

6 c© 2009 Information Processing Society of Japan

Vol.2009-AL-124 No.5
2009/5/11

IPSJ SIG Technical Report

because dn+1
2 e ≥ n − dn+1

2 e + 1. We denote T (n − dn+1
2 e + 1) by Thalf and let

Xv = max(TC0,Γ(v) − Thalf, 0) for any agent v. Informally, Xv is the number
of interactions that occurs between time Thalf and the time at which agent v

becomes infected. Consider the case v /∈ IC0,Γ(Thalf). At any time t ≥ Thalf, at
least n−dn+1

2 e+1 (≥ n
2) agents are infected. Therefore, each interaction at time

t ≥ Thalf infects v with the probability of at least 1
nC2

· n
2 ≥ 1

n , and hence, we
have Pr(Xv > ns

96) ≤ (1 − 1
n)ns/96 ≤ exp(− s

96). Since the number of infection-
free agent at time Thalf is at most n

2 , Pr(Xpost > ns
96) ≤ Pr(

∨
v∈V (Xv ≥ ns

96)) ≤∑
v∈V Pr(Xv ≥ ns

96) ≤ n
2 · exp(− s

96). By the equivalence of the distribution of
Xpre and Xpost, we have

Pr
(
IC0,Γ

(ns

48

)
6= V

)
= Pr

(
T (n) >

ns

48

)
≤ Pr

(
Xpre >

ns

96

)
+ Pr

(
Xpost >

ns

96

)
≤ n · exp

(
− s

96

)
.

¤
We define Lhalf to be the set of all configurations in which there exists at least

one leader and the timer value of every agent is greater than or equal to s/2.
Note that Shalf = Lhalf ∩ Lone. The following corollary is directly obtained from
Lemmas 1, 4, and 5.

Corollary 1 Let C0 be a configuration in Lone and let ΞPLE (C0, Γ) =
C0, C1, . . . , Cns

48
, Then, Pr(Cns

48
∈ Lhalf) ≥ 1−n·exp(−s/36)−n·exp(−s/96)

holds.
We define RJ γ(v, t) for any v ∈ V and any t ≥ 0 as follows: if v joins in γ(t),

RJ γ(v, t) = 1, otherwise RJ γ(v, t) = 0. The number of real interactions of v is
defined by RI γ(v, t) =

∑t−1
i=0 RJ γ(v, t). Intuitively, RI γ(v, t) is the number of

interactions in which v joins between time 0 and time t − 1.
Lemma 6 Pr(maxv∈V RI Γ(v, ns

48) ≤ s
2) ≥ 1 − n · exp(−s/4) holds.

Proof. For any integer t ≥ 0 and any agent v ∈ V , the probability that v

joins in Γ(t) is 2
n . Hence, RI Γ

(
v, ns

48

)
∼ B(ns

48 , 2
n). Applying Chernoff bounds,

Pr(Y ≥ R) ≤ 2−R holds for any binomial random variable Y and any real number
R ≥ 6 ·E[Y]. (See Expr.4.3 in 10)). Since s

2 ≥ 6E[RI Γ(v, ns
48)] and ln 2 ≥ 1

2 hold,

Pr
(

max
v∈V

RI Γ

(
v,

ns

48

)
≥ s

2

)
≤

∑
v∈V

Pr
(
RI Γ

(
v,

ns

48

)
≥ s

2

)
≤ n · 2−s/2 ≤ n · exp

(
−s ln 2

2

)
≤ n · exp

(
−s

4

)
.

¤
Corollary 2 Pr((ΞPLE (C0, Γ))pre(ns

48) ∈ LE) ≥ 1 − n · exp(−s/4) holds for
any configuration C0 in Shalf .

Proof. Recall that an execution of PLE staring from a configuration in Lone

keeps its unique leader until next timeout happens (Section 3.1). Since C0 ∈ Shalf,
timeout happens by time ns

48 − 1 only when some agent joins in at least s
2 + 1

interactions between time 0 and time ns
48 − 1. Therefore, the corollary follows

from Lemma 6. ¤
Theorem 1 Any configuration in Shalf is Ω(ses/96)-loosely-safe configuration

for LE and PLE , i.e. Expr.(2) holds.
Proof. Under the assumption s ≥ 96(2 lnn + ln 24) and n ≥ 2, we have

exp(− s
4) + exp(− s

36) ≤ exp(− s
96). Hence, exp(− s

4) + exp(− s
36) + exp(− s

96) ≤
2 exp(− s

96) follows. Therefore, Expr.(3) holds for any configuration C0 ∈ Shalf

from Corollaries 1 and 2. Hence, we obtain Expr.(2) by Lemma 3. ¤
Next, we show Expr.(1) to complete our proof. We denote by L the set of all

configurations in which there exists at least one leader. The following inequality
clearly holds:

max
C∈Call

ECTPLE (C,Shalf)

≤ max
C∈Call

ECTPLE (C,L) + max
C∈L

ECTPLE (C,Lhalf) + max
C∈Lhalf

ECTPLE (C,Shalf).

Therefore, for obtaining Expr.(1), it suffices to show that each term in the right
side of the above inequality belongs to O(ns log n). This is proven by the following
three lemmas. (We omit the proofs of Lemma 8 and 9 due to the lack of space.)

Lemma 7 maxC∈Call ECTPLE (C,L) belongs to O(ns log n).
Proof. We define ν(C, i) (0 ≤ i ≤ s) as the number of agents with timer

value i in configuration C, i.e. ν(C, i) = |{v ∈ V | C(v).time = i}|. For any
integer i, j (0 ≤ i ≤ s, 1 ≤ j ≤ n) we denote by Wi,j the set of all configurations
in which there exists no leader, the maximum timer value of all agents is i, and

7 c© 2009 Information Processing Society of Japan

Vol.2009-AL-124 No.5
2009/5/11

IPSJ SIG Technical Report

ν(C, i) = j holds.?1 For any set of configurations X ∈ Call, we denote the
complement set Call \ X by X . Note that L =

∪s
i=0

∪n
j=1 Wi,j .

Let wi,j be maxC∈Wi,j ECTPLE (C,Wi,j). By the definition of PLE , no interac-
tion increments the maximum timer value of all agents as long as there exists no
leader in the population. Therefore, once an execution of PLE reaches a configu-
rations in Wi,j from a configuration in Wi,j , the execution cannot reach any con-
figuration in Wi,j thereafter. Hence, the inequality maxC∈Call ECTPLE (C,L) ≤
w0,n +

∑s
i=1

∑n
j=1 wi,j holds. With simple calculation, we can obtain wi,j ≤

n2/(j(2n − j)) when 1 ≤ i ≤ s, 1 ≤ j ≤ n. Therefore, we have

wi,j ≤ n2

j(2n − j)
= 1 +

(n − j)2

j(2n − j)
≤ 1 +

n − j

j
=

n

j
.

Clearly, w0,n is 1 with the probability 1. Hence, we obtain

max
C∈Call

ECTPLE (C,L) ≤ w0,n +
s∑

i=1

n∑
j=1

wi,j ≤ 1 + ns · H(n) ∈ O(ns log n),

where H is the harmonic function. ¤
Lemma 8 maxC∈L ECTPLE (C,Lhalf) belongs to O(ns).
Lemma 9 maxC∈Lhalf ECTPLE (C,Shalf) belongs to O(ns).
Thus, we have Expr.(1). The following theorem is directly derived from Thorem

1 and Expr.(1).
Theorem 2 PLE is (O(ns log n), Ω(ses/96))-probabilistic loosely-stabilizing

for behavior LE and Shalf if s ≥ max(3n, 96(2 lnn + ln 24)) holds.
Recall that PLE knows an upper bound N of n. When we set s =

max(96N, 96(2 lnN + ln 24)), PLE realizes (O(nN log n), Ω(NeN))-probabilistic
loose-stabilization for behavior LE and Shalf.

4. Conclusion

In this paper, we introduced a novel concept of loose-stabilization and presented
a probabilistic loosely-stabilizing leader election protocol in the PPP model of
complete networks. Starting from an arbitrary configuration, the proposed pro-
tocol reaches a loosely-safe configuration within O(nN log n) expected steps, and

?1 Note that W0,j = ∅ for any integer j (1 ≤ j < n)

then, it keeps a unique leader for Ω(NeN) expected steps, where n is the actual
network size and N is a known upper bound of n. This protocol has practical
significance from the following reason: the protocol can be practically considered
to attain self-stabilization because of exponentially long time of keeping a unique
leader while the self-stabilizing leader election in the PPP model of complete
networks is impossible without knowledge of the exact network size4).

Acknowledgments This work is supported in part by Global COE Pro-
gram of MEXT, Grant-in-Aid for Scientific Research ((B)17300020, (B)19300017,
(B)20300012) of JSPS, Grant-in-Aid for Young Scientists ((B)18700059) of JSPS,
and the Kayamori Foundation of Informational Science Advancement.

References

1) Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M. and Peralta, R.: Computation
in networks of passively mobile finite-state sensors, Distributed Computing, Vol.18,
No.4, pp.235–253 (2006).

2) Angluin, D., Aspnes, J. and Eisenstat, D.: Fast Computation by Population Proto-
cols with a Leader, Proceedings of Distributed Computing, 20th International Sym-
posium, pp.61–75 (2006).

3) Angluin, D., Aspnes, J., Fischer, M. and Jiang, H.: Self-stabilizing Population
Protocols, Proceedings of Principles of Distributed Systems, pp.103–117 (2006).

4) Cai, S., Izumi, T. and Wada, K.: Space Complexity of Self-Stabilizing Leader
Election in Passively-Mobile Anonymous Agents, To be submitted.

5) Devismes, S., Tixeuil, S. and Yamashita, M.: Weak vs. Self vs. Probabilistic Sta-
bilization, Proceedings of the IEEE International Conference on Distributed Com-
puting Systems (ICDCS 2008), pp.681–688 (2008).

6) Dijkstra, E.: Self-stabilizing systems in spite of distributed control, Communica-
tions of the ACM, Vol.17, No.11, pp.643–644 (1974).

7) Gouda, M.: The Theory of Weak Stabilization, Proceedings of the 5th International
Workshop on Self-Stabilizing Systems, Springer, pp.114–123 (2001).

8) Israeli, A. and Jalfon, M.: Token management schemes and random walks yield
self-stabilizing mutual exclusion, Proceedings of the ninth annual ACM symposium
on Principles of distributed computing, ACM New York, NY, USA, pp.119–131
(1990).

9) Lin, J., Huang, T., Yang, C. and Mou, N.: Quasi-self-stabilization of a distributed
system assuming read/write atomicity, Computers and Mathematics with Applica-
tions, Vol.57, No.2, pp.184–194 (2009).

10) Mitzenmacher, M. and Upfal, E.: Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis, Cambridge University Press (2005).

8 c© 2009 Information Processing Society of Japan

Vol.2009-AL-124 No.5
2009/5/11

