
IPSJ SIG Technical Report

Implementation of a Bit-parallel Approximate

String Matching Algorithm

Mikael Onsjö †1 and Osamu Watanabe†1

Approximate string matching is an important problem in various fields such
as natural text searching or when working with large sets of DNA data. We
study the bit-parallel approximate string matching algorithms of Baeza-Yates,
Navarro1) and of Hyyrö2). We show how to implement these in an efficient
and natural way for certain parallel architectures. Specifically we compare the
sequential and parallel implementations on an AMD Opteron 2.4 GHz and on
an Nvidia Tesla processor (GPU) respectively. The speedup in this case is
about 50 times, meaning the AMD takes 50 times longer than the T1, when
compared for searches of patterns of length 1024 characters in the DNA of the
fruit fly, Drosophila Melanogaster (165 million base pairs [characters]). E.g., for
edit distance 15, the Tesla was able to find all matches in 8.5 seconds whereas
it took 406 seconds for the AMD.

1. Introduction

Approximate string matching is the task of finding all substrings of consecutive

characters in a body of text (of length n), that are within a given edit distance (k)

of a given pattern (of length m). The edit distance between two strings is defined

as the minimum number of edits (character insertion, deletion or replacement)

needed in order to transform one string into the other.

This problem is of high importance in many areas, e.g. for search engines when

looking for pages relevant to a query or in bioinformatics when analyzing huge

sets of DNA sequencing data. Although our work also applies to the former

situation (e.g. searching in bodies of English text) we focus on the latter, that is,

on searching for long patterns in sequences of the characters A,C,G and T. As

will become apparent, the hardware is well suited for this case.

The importance of the problem has inspired significant research and many

†1 Dep. of Mathematical and Computing Science, Tokyo Institute of Technology

algorithms have been proposed. Arguably the most “practical” approach has

been a non-deterministic finite automaton (NFA) with binary states encoded

efficiently into a small number of computer words. This has been studied and

gradually improved on in a series of papers with important additions by Baeza-

Yates and Navarro1) (1999) and Hyrrö2) (2008). These two publications form the

basis for the one we present here.

In 2) the size of the NFA is (m− k)(k + 1) states. If this is less than the word

size (W) of the machine, the entire NFA can be encoded in a single word and the

running time per letter of text is just O(1). Particularly in many bioinformatics

applications this is, however, in terms of pattern length, not nearly enough as one

may well desire to search for patterns of around 1000 characters. For such cases,

1) describes how to encode the NFA efficiently into some number w of computer

words that are then updated sequentially by a common computer. Even so, it

seems that in many practically relevant situations (e.g. k << m) this approach

may arguably be the fastest one known.

We show how to implement the same algorithm in CUDA for a Tesla processor

from Nvidia. In this case the w words can be updated virtually in parallel (though

technically in warps of 32 or half-warps of 16 states at a time) in an elegant way,

as long as w ≤ 512. This allows, e.g., the parameter combination k = 15 and

m = 1039 or longer patterns still if k is reduced below 10.

For experimentation we use the DNA of the fruit fly as obtained from

“www.fruitfly.org” (160MB in fasta [ascii] format, 165 million base pairs) and

a pattern of 1024 characters arbitrarily taken from the DNA. We find that the

speedup between a sequential 32-bit AMD Opteron, 2.4 GHz (presently on the

TSUBAME super computer) and the T1 GPU is around 50 times in the favor of

the GPU.

We will proceed by giving a brief description of the general NFA algorithm.

The reader who is more interested in the implementational aspects may wish to

skip the next section.

2. The NFA approach in general

The original NFA1),2) is defined by a (k + 1)× (m + 1) matrix of binary states

(active=match or inactive=no-match), let the states be called sij . States of the

1 c© 2009 Information Processing Society of Japan

Vol.2009-AL-124 No.3
2009/5/11

IPSJ SIG Technical Report

Fig. 1 Efficient encoding of small NFA into 8-bit computer word.

first column, si0, are always active, signifying that the empty string is always

matched. Subsequent columns are labeled in order by the characters of the

pattern. The text is scanned once, character by character from start to end. For

every new character of text, the entire NFA is updated in parallel according to

the following rules. For each state sij , i, j > 0:

match: If s(i−1)j is active and the current text character matches the pattern

character of column i, then sij becomes active.

replace: If s(i−1)(j−1) is active then sij becomes active.

insert: If si(j−1) is active then sij becomes active.

delete: If s(i−1)(j−1) becomes active by any rule, then so does sij .

And similarly for i = 0, j > 0 but with only the first rule. If a state in the last

column becomes active, then there is a corresponding match between the text

and the pattern.

It turns out that it is not necessary to encode and update the entire original

NFA; it suffices to consider the (m− k) diagonals that start at some s0i, 0 < i ≤

m− k and extend downwards to the right as it is laid out in the following figure,

1, that illustrates the encoding.

The reason for this is that the lower left triangle of the NFA is always active

and the upper right triangle such that if any state there becomes active then

there is at least one match (due to the delete rule). Ignoring the upper right

triangle loses some information about how short a match can be made but this

is generally considered to be of no concern at this point (formally we are only

addressing the question of whether there is some match within edit-distance k).

In practice it is, somewhat counter-intuitively, common to encode active states

as zero bits and inactive states as ones. This is because generally machines and

programming languages have better support for shift operations that introduce

zeros at the abandoned side of the word. As an example of how the operations

for updating the NFA are implemented, consider the replace rule as stated

above, and the encoding defined by figure 1. States below the top row obtain

their correct assignment by a simple left shift (note that, also perhaps a bit

counter-intuitively, each column is encoded “backwards”). Since states on the

top row cannot be activated by the replace rule, it is prudent to mask the result

appropriately (putting top row bits to one explicitly), though this part can be

somewhat simplified when all rules are considered togehter. Masking in this case

(and this example) entitles taking a bitwise OR with the constant (00100100).

In C-style pseud-code, the rule might be written as:

NFArep ← (NFA << 1) | (0k1)m−k

where the exponential denotes repetition of a bit pattern. The results from

different rules can be combined by using a bitwise AND:

NFA← NFAmat & NFArep & NFAins & NFAdel

though we stress again that this particular organization would introduce a few

more operations than what is strictly necessary.

For the match rule (and the match rule only), it is obviously necessary to

consider the characters of the pattern. It is common to initially (before scanning

the text) calculate a constant mask of the same size as the NFA, for each unique

character that appears in the text. This mask, call it M[x] for character x, should

have a zero in each place for which the corresponding state of the NFA has a

matching transition from the left. That is, if x happens to appear at position j

(counting from 0) of the pattern then for each i should M[x]ij (if indexed as s

above) be zero. Hence if the character x is encountered in the text, the match

part in the NFA update can be calculated by a right shift of k + 1 and a bitwise

OR with M[x]:

NFAmat ← (NFA >> (k + 1)) |M[x]

The insert and delete rules are somewhat more complicated and we refer

again to paper2) for what appears to be the smallest updating implementation

in terms of both space and the number of operations required. Paper1) contains

extensive suggestions for how to encode and update NFA’s that don’t fit into a

single machine word.

Finally, as an example figure 2 shows what happens as the pattern “tit” is

2 c© 2009 Information Processing Society of Japan

Vol.2009-AL-124 No.3
2009/5/11

IPSJ SIG Technical Report

Fig. 2 Example of matching.

matched against the text “tat” while allowing for a maximum edit distance of

one (meaning the number of rows in the NFA is two).

3. CUDA-implementation

An obvious and trivial way to parallelize the string matching task is to simply

divide the text into many separate pieces. There are two immediate drawbacks

to doing this on a single machine: On one hand the searches have to overlap

by the allowed edit distance and on the other hand it seems difficult to handle

memory access in an efficient manner. We note that the architecture of the Tesla

processor from Nvidia and the language CUDA rather suggest a natural way to

extend the bit-parallelism of the NFA algorithm. To understand why, though, we

first need to know something about the architecture, see Nvidia’s programming

manual3) for details. What follows is a summary of some relevant key points:

Code on the Tesla is executed in several blocks of up to 512 threads each. 16

KB of shared memory is attached to each multiprocessor in such a way that

accessing it (with some care) is essentially no more expensive than an operation

on a register. This memory is shared between threads in a block but not so

between blocks. The access for each warp should be either to the same memory

position (in which case the read result is broadcasted) or to positions served by

different memory banks. 16 banks are organized in an interlaced fashion so that

e.g. accessing sequences of memory positions is an efficient approach.

It is a readily supported matter to synchronize between threads in a block but

much more complicated to do the same between blocks. In addition to the shared

memory there is 4 GB of global memory that is relatively slow to access and 64

KB of constant memory with a 16 KB cache, that is suitable for such constant

as are accessed simultaneously by all threads in a warp.

Though each thread (multiprocessor) operates with individual 32-bit words, on

a higher level it is possible to think about the operations of a block as being on

Fig. 3 Usage of device memory.

single huge words, e.g. of size 512 · 32 = 16384. This is also how we choose to

implement the NFA algorithm; each block in CUDA represents an NFA and is

responsible for a separate portion of the text. Since the portions have to overlap,

it is on one hand desirable to have as few as possible. On the other hand we

need many in order to take advantage of all multiprocessors and to allow the

scheduling its full potential. Experimentally we find that with little dependence

on other parameters, about 300 blocks is optimal.

Each block reserves 512 32-bit words (uint) shared memory for the NFA (actu-

ally padded by an additional uint on each side), 512 words as a buffer for text and

4 ·512 words as a buffer for the compiled pattern (512 words each for the possible

characters A, C, G and T). This amounts to about 12 KB of the available 16 KB.

Program execution proceeds roughly as in figure 4.

Though the loops unfortunately add some overhead in themselves, obviously

the most critical part is (if not the memory operations) the subroutine “NFA

Update”. An inspection of the assembler-like .ptx file that can be generated

with the compiler, reveals that this part is implemented with approximately 30

4-cycle instructions. It is difficult to imagine that this could be much reduced

unless a completely different approach was considered. The routine looks roughly

as in figure 5 where C1, C2 and C3 are constants that depend on how the NFA

is encoded.

The text is compressed tightly into integers, each of the 4 DNA characters

represented by a two bit combination so as to minimize the amount of data that

3 c© 2009 Information Processing Society of Japan

Vol.2009-AL-124 No.3
2009/5/11

IPSJ SIG Technical Report

(CPU) Get data, parameters and pattern to RAM and GPU global memory.
(CPU) Compile the pattern and put it in global memory.
(GPU) Execute Kernel per block:

Initialize masks and constants.
Load compiled pattern global→ shared.
while more text do

Load text to buffer global→ shared.
for each character in text buffer do

Subroutine: NFA Update
Check for match...

end for

end while

(CPU) Get result from GPU.

Fig. 4 Outline of implementation

cw ← NFA[i]
cwleft← NFA[i− 1]
cwright← NFA[i + 1]
cm←M [nexttextchar][i]
x1 ← (cw >> (k + 1)) | (cwleft << C1) | cm
x2 ← ((0k1)m−k | (cw << 1 & ((x + (0k1)m−k)x))
x3 ← (cw << (k + 2)) | (cwright >> C2)
NFA[i]← C3 & x1 & x2 & x3

Fig. 5 Outline of subroutine NFA-Update for thread i.

needs to be moved from global to shared memory. That is to say, 16 characters

of the text are stored in one 32 bit word. Access to the compiled pattern and the

NFA is always done in sequences so that all the 16 memory banks are used and

no conflict occurs. Access to the text buffer is always to the same position by all

threads so as to enable broadcasting.

4. Results and Notes

Sequential and parallel implementations of the NFA algorithm were compared

using a sample set of DNA from the fruit fly as obtained from www.fruitfly.org.

This set is about 160MB in uncompressed fasta format and contains slightly more

than 162 million DNA characters (A, C, G or T). An arbitrary substring of 1024

characters was selected from the text and the algorithms run for edit distances

in the interval [1, 15]. The result is presented as a graph in figure 6. For k = 15

the GPU was able to find all matches in 8.5 seconds whereas it took the CPU

406 seconds, i.e. 48 times longer.

The notable irregularities in both curves in figure 6 correspond to places where

the number of NFA diagonals packed into each 32-bit computer word, changes.

Since m is fixed, only k affects the number of words used and for certain intervals

of k, this remains constant. E.g. k ∈ [8, 9] implies that we pack three diagonals

into each word whereas k ∈ [10, 15] implies two.

Our present implementation assumes that each word contains two or more full

diagonals of the NFA, meaning k < 16. The reason for this is that we wish to

make the sub routine “Update NFA” as simple as possible. For larger k (as for

certain cases of k in the interval [1, 15]) it is possible to pack the diagonals more

tightly (use almost every bit of the words) by using a more complicated scheme

that is also described in 1).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

50

100

150

200

250

300

350

400

450

500

T
im

e
A

M
D

 C
P

U
 (

se
c)

0 5 10 15
0

1

2

3

4

5

6

7

8

9

10

T
im

e
T

1
G

P
U

 (
se

c)

Edit Distance
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15

20

25

30

35

40

45

50

R
at

io
 A

M
D

 C
P

U
 ti

m
e

to
 T

1
G

P
U

 ti
m

e.

Edit Distance

AMD Opteron 2.4 GHz (CPU)

Nvidia T1 (GPU)

Fig. 6 Running times of NFA algorithm with sequential and parallel implementations. The
times are plotted (with different scales) in the left figure and the ratio between the two
time sequences in the right.

References

1) Baeza-Yates, R. and Navarro, G.: Faster approximate string matching, Algorith-

mica, Vol.23, pp.127–158 (1999).
2) Hyyrö, H.: Improving the bit-parallel NFA of Baeza-Yates and Navarro for ap-

proximate string matching, Inf. Process. Lett., Vol.108, No.5, pp.313–319 (2008).
3) Nvidia: NVIDIA CUDA Compute Unified Device Architecture Programming Guide

Version 2.0, http://developer.download.nvidia.com/.

4 c© 2009 Information Processing Society of Japan

Vol.2009-AL-124 No.3
2009/5/11

