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Abstract

近年，WWWやインターネットなどの非一様な構造を持つ多くの社会ネットワークを説明
できるモデルとしてスケールフリーグラフが注目を集めている．本研究では，スケールフリー
な k-木を生成する単純なランダムモデルを提案する．k-木とは，固定された任意の正整数パラ
メータ kに対する一般化された木であり，グラフマイナーの分野では基本的な概念である．本
稿で提案するモデルは非常に自然で単純な規則から生成される．最初に大きさ k + 1の極大ク
リークを一様ランダムに選び，次にそのクリークの中の k個の頂点を一様ランダムに選び，そ
してこれら k個の頂点に隣接するように新しい頂点を追加するだけである．つまり本モデルで
は，新しい頂点を 1個追加するときに一様ランダムな選択を 2回行なうだけでよい．このとき
結果として得られる k-木において，頂点の次数分布は漸近的にベキ乗則に従い，クラスタ係
数は大きく，そしてグラフの直径は小さい．ランダムな選択が単純なので，こうした性質の解
析も容易である．また得られた k-木の直径は実験的結果により o(log n)であることが確認でき
た．ただしここで nは頂点数であり，o(1)項は kの関数である．
キーワード: スケールフリーグラフ，スモールワールド，k-木
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Abstract

Scale free graphs have attracted attention as their non-uniform structure that can be
used as a model for many social networks including the WWW and the Internet. In this
short note, we propose a simple random model for generating scale free k-trees. For any
fixed integer k, a k-tree consists of a generalized tree parameterized by k, and is one of
the basic notions in the area of graph minors. Our model is quite simple and natural; it
first picks a maximal clique of size k + 1 uniformly at random, it then picks k vertices in
the clique uniformly at random, and adds a new vertex incident to the k vertices. That is,
the model only makes uniform random choices twice per vertex. Then (asymptotically) the
distribution of vertex degrees in the resultant k-tree follows a power law, the k-tree achieves
a large clustering coefficient, and the diameter is small. Since the random process is simple,
so is the analysis of these properties. Moreover, our experimental results indicate that the
resultant k-trees have extremely small diameter, proportional to o(log n), where n is the
number of vertices in the k-tree, and the o(1) term is a function of k.
Keywords: scale free graph, small world network, k-tree.
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1 Introduction

Small world networks are the focus of recent interest because of their potential as models for
interaction networks of complex systems in real world since early works by Watts & Strogatz
[7] and Barabási & Albert [1]. There are three properties of a graph G to characterize it to be
called small world networks or scale free networks (see, e.g., [5]). These properties which we
denote by SF, CC, SW are as follows: (SF) The degree distribution of G follows a power law
distribution. That is, the number of vertices of degree i is proportional to iα for some fixed α.
It is known that α is between 2 and 3 in the real social networks. (CC) Two neighbors of any
node of G are also likely to joined by an edge. More precisely, the clustering coefficient CC(v)
at v is defined as follows:

CC(v) =
|{u ∼ w : u,w ∈ N(v)}|(

d(v)
2

) ,

where u ∼ w means that they are joined by an edge. The clustering coefficient CC(G) of the
graph G is the average clustering coefficient CC(v) for all vertices v in G. (SW) Two nodes of G
are connected by a relatively short path. Though many models for generating graphs have been
proposed and investigated, there are few models that satisfy all the properties. Moreover, it is
not easy to see the combinatorial structure of the graphs obtained, and analysis of the properties
is rather complicated.

Recently, Miyoshi et al. propose a model of scale free graphs based on time sequential data
[6]; their model, called scale free interval graph, employs interval graphs as basic graphs. A graph
is an interval graph if and only if there is a one-to-one mapping between vertices and intervals
such that two vertices are joined by an edge if and only if the corresponding intervals share a
common point. In their model, each vertex in the graph corresponds to a time period, and its
lifespan is determined by a simple rule: longer life tends to survive in the next generation. More
precisely, if an interval has a length k at time t, it will grow to a length k + 1 at time t + 1
with probability 1

ζ(α)(k + 1)−α, where α > 2 is any positive constant and ζ(α) =
∑∞

i=1 i−α (the
Riemann’s zeta function). A scale free interval graph satisfies two properties (SF) and (CC)
of small world networks with high probability. The analysis of the scale free interval graphs is
simpler than the other models.

In this short note, we propose a simple model to generate scale free k-trees which satisfy all
three properties. In the area of graph algorithms, k-trees form a well known graph class that
generalizes trees and plays an important role in graph minor area (see [2, 3] for further details).
There are several equivalent definition of k-trees, and we employ one of them as follows; for any
fixed positive integer k, (0) a complete graph Kk of k vertices is a k-tree, (1) for a k-tree G of
n vertices, a new k-tree G′ of n + 1 vertices is obtained by adding a new vertex v incident to a
clique of size k in G. We note that a complete graph Kk+1 of k + 1 vertices is a k-tree, which is
obtained by adding a vertex to Kk.

For each time t = 1, 2, . . ., our model is an algorithm that generates a sequence of k-trees of
k + t vertices as follows. By the definition, it is clear that Gk(t) is a k-tree of k + t vertices. We
remark that the algorithm only makes uniform random choices twice to make one k-tree. Let
X(t) be a random variable, and X(t) = EX(t) be its expectation, then limt→∞ X(t)/t is the
limiting expected proportion of X(t). The limiting expected clustering coefficient c(k) is defined
by

c(k) = lim
t→∞

ECC(Gk(t)).

Our main theorem states that the simple combination of two uniform random choices makes the
graph be scale free with properties (SF) and (CC) like a scale free interval graph:
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Algorithm 1: Generation of k-trees
Input : Positive integer k.
Output: A series of k-trees Gk(1), Gk(2), . . ..
begin1

t = 1; let Gk(t) be Kk+1; output Gk(t);2

for t = 2, 3, . . . do3

pick Dt = Kk+1 from Gk(t − 1) uniformly at random with probability 1
t ;4

pick ft = Kk from D uniformly at random with probability 1
k+1 ;5

let Gk(t) be the graph obtained from Gk(t − 1) by adding a new vertex vt incident6

to every vertex in ft;
output Gk(t);7

end8

end9

Theorem 1 Let k ≥ 2. For a graph Gk(t), we denote by ni the number of vertices of degree i.
Then the graph Gk(t) has the following properties.

1. The limiting expected proportion ni of vertices of degree i = k + ` − 1 is given by

nk+`−1 =
(` − 1)!k`−1(k + 1)∏
j=1...`((j + 1)k + 1)

.

This expression has power law asymptotic

ni ∝ i−(2+1/k).

2. The limiting expected clustering coefficient c(k) is given by

c(k) =
∑
`≥1

(
k
2

)
+ (k − 1)(` − 1)(

(k−1)+`
2

) (` − 1)!k`−1(k + 1)∏
j=1...`((j + 1)k + 1)

.

For k ≥ 2, c ≥ 1/2 and c(k) → 1 if k → ∞.

We give a short combinatorial proof of the main theorem, and note the following theorem for
the finite process Gk(t). We say a sequence of events Et occurs with high probability (whp ) if
limt→∞ Pr(Et) = 1.

Theorem 2 The following properties hold whp

1. Let N(i, t) denote the number of vertices of degree i in Gk(t). Then N(i, t) = tni(1+o(1))
for i ≤ ta, where a is some positive constant.

2. CC(Gk(t)) = c(k)(1 + o(1)).

3. The diameter of Gk(t) is O(log t).

We also study k-trees of finite size experimentally. We show the resultant k-tree has the property
(SW), and hence it achieves a small world. Precisely, the experimental results indicate that the
diameter of the resultant k-tree of n vertices is proportional to o(log n), as k increases. This
is an advantage of the scale free interval graphs in [6]; their model generates scale free interval
graphs of n vertices width diameter Θ(n).

We assume that the reader is familiar to the notion of probability and graph theory. In
this short note we prove Theorem 1, briefly discuss Theorem 2 and give experimental results
supporting Theorem 1 and our hypothesis regarding diameter.
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2 Proof of Theorem 1

To prove the theorem, we first show the following lemma:

Lemma 3 Let vt be the vertex added to Gk(t) at time t. For any t′ ≥ t, let ` be the number of
Kk+1 that contain vt. Then the clustering coefficient at vt in Gk(t′) is

CC(vt) =

(
k
2

)
+ (k − 1)(` − 1)(

(k−1)+`
2

) .

Proof. Suppose that at time t > 1, we add a vertex vt and join it to each vertex u1, . . . , uk in
the clique ft of size k chosen in step 5 in the clique Dt of size k +1 chosen in step 4. Then Gk(t)
contains k + t vertices. We call each induced clique Kk in Gk(t′) a face of Gk(t′), and define the
degree of a face f by the number of Kk+1 containing f , that is denoted by degt′(f). At time t, we
add a new clique Q = Kk+1 by joining vt to an existing face ft. Thus degt(ft) = degt−1(ft) + 1
since ft is in Q.

We define face degree Degt′(v) of a vertex v by the total face degree of all faces incident
with v. That is, Degt′(v) =

∑
v∈f degt′(f). Initially, when vt is added at time t, Degt(vt) = k

as there are k faces containing vt, i.e., Q = Kk+1 contains k Kk subgraphs with distinguished
vertex v (delete any of the k edges incident with v). Extending a face f to Kk+1 adds one to
deg(f) (since it is now in an extra Kk+1) and k − 1 extra faces at vt of face degree 1. Thus
Degt′(vt) = k`, where ` be the number of Kk+1 that contain vt.

At time t′, we denote the set of neighbors of v by Nt′(v), and define dt′(v) = |Nt′(v)| (that is,
dt′ is the ordinary degree of v in Gk(t)). When vt is added to Gk(t), we have dt(vt) = Degt(vt) =
k. Each time a face containing vt is extended the face degree of vt increases by k, but the vertex
degree of vt only increases by 1. Hence dt′(vt) = (k − 1) + Degt′ (vt)

k .
Now we define triangle degree ∆v of v by the number of K3 in the subgraph induced by

{v}∪N(v). That is, CC(v) is given by ∆v

(d(v)
2 )

. Initially, when vt is added to Gk(t) it is contained

in a unique Kk+1(= Q), and the k edges incident at v induce
(
k
2

)
triangles. Suppose face

ft = Kk, incident with vt, is extended to a Kk+1 at step t′. Face f already has k − 1 edges vui

with i = 1, . . . , k−1, each of which will form a new triangle (vt′vt, vt′ui, vtui) with the new vertex
vt′ . Thus ∆vt =

(
k
2

)
+ (k − 1)(dt′(v) − k). Therefore if Degt′(vt) = k` then dt′(vt) = (k − 1) + `

and ∆vt =
(
k
2

)
+ (k − 1)(` − 1). Since CC(vt) = ∆vt

(d(vt)
2 )

, the lemma follows.

We now turn to the clustering coefficient of a graph Gk(t), which is defined by CC(Gk(t)) =∑
v

CC(v)
k+t . Let f`k be the limiting proportion of vertices of face degree `k and nk−1+` the limiting

proportion of vertices of degree k − 1 + `. Then we have f`k = nk−1+` and hence

lim
t→∞

CC(G(t)) =
∑
`≥1

f`k

(
k
2

)
+ (k − 1)(` − 1)(

(k−1)+`
2

) . (1)

Next we analyze f`k:

Lemma 4

f`k =
(` − 1)!k`−1(k + 1)∏
j=1...`((j + 1)k + 1)

. (2)

Proof. For t ≥ t′, the relationship between vertex degree and face degree of a vertex vt′ is given
by dt(vt′) = (k − 1) + Degt(vt′ )

k . Thus it suffices to study face degree Degt(vt′) of the vertices vt′

of Gk(t).
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Let F i(Gk(t)) be the number of vertices of face degree i in Gk(t) at the end of time t, and
let Fi(t) be its expected value.

Recall that we make Gk(t + 1) from Gk(t) by picking a Dt+1 = Kk+1 uniformly at random
from Gk(t) with probability 1

t , and then picking a face ft+1 = Kk uniformly at random from
Dt+1 with probability 1

k+1 . This process in fact picks faces proportional to their degree. This
can be seen as follows. Suppose face f has degree i and thus occurs in i distinct Kk+1. Then

Pr(f is chosen) =
i

(k + 1)t
.

Similarly, Pr(face incident with v chosen) = Degt(v)
(k+1)t .

On adding vertex vt+1, the number of vertices of face degree i is updated as follows:

F i(Gk(t + 1)) = F i(Gk(t)) + 1(i = k) +
∑

Degt(v)=i−k

1(v is in chosen face)

−
∑

Degt(v)=i

1(v is in chosen face),

where 1(H) is the indicator for the event H. On taking expectations over the random choices
made by the process on the given graph Gk(t), we obtain

Fi(Gk(t + 1)) = F i(Gk(t)) +
(i − k)F i−k(Gk(t))

(k + 1)t
− i F i(Gk(t))

(k + 1)t
+ 1(i = k).

On taking expectations over all processes Gk(t), we obtain the following recurrences, which are
valid for i = `k, ` ≥ 1.

Fk(t + 1) = Fk(t) + 1 − kFk(t)
(k + 1)t

Fi(t + 1) = Fi(t) +
(i − k)Fi−k(t)

(k + 1)t
− iFi(t)

(k + 1)t
(i > k).

Now we use the following lemma on real sequences [4, Lemma 3.1]:

Lemma 5 ([4, Lemma 3.1]) If (αt), (βt) and (γt) are real sequences satisfying the relation

αt+1 =
(

1 − βt

t

)
αt + γt,

where limt→∞ βt = β > 0 and limt→∞ γt = γ, then limt→∞
αt
t exists and equals γ

1+β .

Using Lemma 5, we have

lim
F`k(t)

t
=

(` − 1)!k`−1(k + 1)∏
j=1...`((j + 1)k + 1)

= f`k.

Theorem 1(i) now follows Lemma 4, and taking the limit of equation (2) gives the claimed
power law. Theorem 1(ii) follows from inserting equation (2) into relationship equation (1). It
can be see directly that for k ≥ 2, c(k) ≥ 1

2 . For the value of c(k), when k → ∞, we see that

c(k) →
∑
`≥1

1
`(` + 1)

= 1.
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3 Proof of Theorem 2

We give a brief outline of the proof. Recall that F i(Gk(t)) be the number of vertices of face
degree i in Gk(t) at the end of time t. The whp convergence of F i(Gk(t)) to fit(1 + o(1)) can
be established by standard methods e.g. [8]. This holds for i ≤ ta, where a is some positive
constant. This establishes that the proportion of vertices of degree i in the finite process Gk(t)
is close to its limiting value. The value of the clustering coefficient follows directly from this.

As regards the diameter, a crude calculation suffices to establish a whp upper bound of
O(log t). Consider a shortest (edge) path vt, u1, ..., ui, v0 back from vt to a root vertex v0 in
G1(t). As half of the Kk+1 in Gk(t) were added by time t/2,

Pr(vt chooses a face f in Gk(t/2)) =
degt(Gk(t/2))

(k + 1)t
≥ 1

2
.

Thus the expected distance to the root must be (at least) halved by the edge vtu1. Whatever
the label s of u1 = vs, this halving occurs independently at the next step. This must terminate
whp after c log t steps, for some suitably large constant c, as we now prove.

Let Zi be an indicator variable for the event that the distance to the root halves at step
i, (conditional on not being at the root), or Zi = 1 identically, if we have arrived at the root.
Then Pr(Zi = 1) ≥ 1/2, and Sj = Z1 + · · · + Zj stochastically dominates the binomial random
variable B ∼ Bin(j, 1/2). As Pr(B < j/4) = O(e−j/16), then after j = c log2 t steps, where
c > 4 we conclude whp that we have arrived. Thus whp diam(Gk(t)) = O(log t).

4 Experimental Results

Algorithm 1 can be implemented easily. In this section, we give experimental results for the
three properties (SF, CC, SW) of scale free networks and small world networks. Although scale
free property and cluster coefficients are checked on a usual PC, we used a supercomputer (SGI
Altix 4700: 96 Processors with 2305GB Memory) to experiment for small world property with
huge n.

Small world property

The first property is the property of a small world. This property implies that any two nodes
on the network is connected by a relatively short path. The experimental results are shown in
Figure 1. The figure implies that any pair of two nodes in a scale free k-tree of n vertices in our
model seems to be joined by a very short path, possibly even of length less than O(log n/ log k).
To observe this, we also plot the number of vertices and the value of (diameters× log k) in
Figure 2. From these experimental results, we conjecture that the diameter of a random k-tree
is proportional to Θ(log n/ log k).

Scale free property

As shown in Theorem 1(1), the distribution of degrees follows power law on the resultant k-tree
in asymptotically. The experimental results imply that convergence to the asymptotic degree
distribution occurs rapidly. In Figure 3, we randomly generate a k-tree of n = 100000 vertices
for k = 3, 5 and 10.
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Figure 1: Diameters for scale free k-trees for k = 2, 3, 5, 10, 20, and 50.
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Figure 2: (Diameters× log k) for scale free k-trees for k = 2, 3, 5, 10, 20, and 50.
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Figure 3: Degree distribution for scale free k-
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Large cluster coefficients

As shown in Theorem 1(2), the limiting expected clustering coefficient c(k) converges to 1
for sufficiently large k. In Figure 4, we generate k-tree of n = 10000 vertices and note the
convergence to the asymptotic result.
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