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Abstract

Scale free graphs have attracted attention as their non-uniform structure that can be
used as a model for many social networks including the WWW and the Internet. In this
short note, we propose a simple random model for generating scale free k-trees. For any
fixed integer k, a k-tree consists of a generalized tree parameterized by k, and is one of
the basic notions in the area of graph minors. Our model is quite simple and natural; it
first picks a maximal clique of size k 4+ 1 uniformly at random, it then picks k vertices in
the clique uniformly at random, and adds a new vertex incident to the k vertices. That is,
the model only makes uniform random choices twice per vertex. Then (asymptotically) the
distribution of vertex degrees in the resultant k-tree follows a power law, the k-tree achieves
a large clustering coefficient, and the diameter is small. Since the random process is simple,
so is the analysis of these properties. Moreover, our experimental results indicate that the
resultant k-trees have extremely small diameter, proportional to o(logn), where n is the
number of vertices in the k-tree, and the o(1) term is a function of k.
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1 Introduction

Small world networks are the focus of recent interest because of their potential as models for
interaction networks of complex systems in real world since early works by Watts & Strogatz
[7] and Barabasi & Albert [1]. There are three properties of a graph G to characterize it to be
called small world networks or scale free networks (see, e.g., [5]). These properties which we
denote by SF, CC, SW are as follows: (SF) The degree distribution of G follows a power law
distribution. That is, the number of vertices of degree ¢ is proportional to ¢* for some fixed «.
It is known that « is between 2 and 3 in the real social networks. (CC) Two neighbors of any
node of G are also likely to joined by an edge. More precisely, the clustering coefficient CC(v)

at v is defined as follows:
~ Hu~w:u,we N(v)}

(")

where u ~ w means that they are joined by an edge. The clustering coefficient CC(G) of the
graph G is the average clustering coefficient C'C(v) for all vertices v in G. (SW) Two nodes of G
are connected by a relatively short path. Though many models for generating graphs have been
proposed and investigated, there are few models that satisfy all the properties. Moreover, it is
not easy to see the combinatorial structure of the graphs obtained, and analysis of the properties
is rather complicated.

Recently, Miyoshi et al. propose a model of scale free graphs based on time sequential data
[6]; their model, called scale free interval graph, employs interval graphs as basic graphs. A graph
is an interval graph if and only if there is a one-to-one mapping between vertices and intervals
such that two vertices are joined by an edge if and only if the corresponding intervals share a
common point. In their model, each vertex in the graph corresponds to a time period, and its
lifespan is determined by a simple rule: longer life tends to survive in the next generation. More
precisely, if an interval has a length k at time ¢, it will grow to a length k + 1 at time ¢ 4+ 1
with probability ﬁ(k +1)~%, where a > 2 is any positive constant and {(a) =Y ;2 i~ (the
Riemann’s zeta function). A scale free interval graph satisfies two properties (SF) and (CC)
of small world networks with high probability. The analysis of the scale free interval graphs is
simpler than the other models.

In this short note, we propose a simple model to generate scale free k-trees which satisfy all
three properties. In the area of graph algorithms, k-trees form a well known graph class that
generalizes trees and plays an important role in graph minor area (see [2, 3] for further details).
There are several equivalent definition of k-trees, and we employ one of them as follows; for any
fixed positive integer k, (0) a complete graph K}, of k vertices is a k-tree, (1) for a k-tree G of
n vertices, a new k-tree G’ of n + 1 vertices is obtained by adding a new vertex v incident to a
clique of size k in G. We note that a complete graph Ky of k+ 1 vertices is a k-tree, which is
obtained by adding a vertex to Kj.

For each time t = 1,2, ..., our model is an algorithm that generates a sequence of k-trees of
k +1t vertices as follows. By the definition, it is clear that G(t) is a k-tree of k +t vertices. We
remark that the algorithm only makes uniform random choices twice to make one k-tree. Let
X (t) be a random variable, and X (t) = EX (¢) be its expectation, then lim; .., X (¢)/t is the
limiting expected proportion of X (t). The limiting expected clustering coefficient c¢(k) is defined
by

CC(v)

c(k) = lim ECC(Gy(t)).

t—o0

Our main theorem states that the simple combination of two uniform random choices makes the
graph be scale free with properties (SF) and (CC) like a scale free interval graph:
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Algorithm 1: Generation of k-trees

Input : Positive integer k.
Output: A series of k-trees G(1), Gr(2), .. ..
1 begin
2 t = 1; let Gi(t) be Kyiq1; output Gg(t);
3 fort=2,3,...do
4 pick Dy = K41 from Gg(t — 1) uniformly at random with probability %;
5 pick f; = Kj, from D uniformly at random with probability k%rl;
6 let G (t) be the graph obtained from Gy (¢t — 1) by adding a new vertex v; incident
to every vertex in fi;

7 output Gg(t);
8 end
9 end

Theorem 1 Let k > 2. For a graph Gi(t), we denote by n; the number of vertices of degree i.
Then the graph Gi(t) has the following properties.

1. The limiting expected proportion n; of vertices of degree i = k + £ — 1 is given by

=D R+ 1)
B | (PRSI 1)

This expression has power law asymptotic

n; oc i~ (LR,

2. The limiting expected clustering coefficient c(k) is given by

5~ @) (R DE 1) (-1 k4 1)
"= 4221 ((k_gl)M) [T=1 oG+ DE+1)

Fork>2,¢>1/2 and c(k) — 1 if k — oo.

We give a short combinatorial proof of the main theorem, and note the following theorem for
the finite process G (t). We say a sequence of events & occurs with high probability (whp ) if
limt_,oo Pl“(gt) =1.

Theorem 2 The following properties hold whp

1. Let N(i,t) denote the number of vertices of degree i in Gy(t). Then N (i,t) = tn;(1+o0(1))
for i < t%, where a is some positive constant.

2. CC(Gg(t)) = c(k)(1+0o(1)).
3. The diameter of Gi(t) is O(logt).

We also study k-trees of finite size experimentally. We show the resultant k-tree has the property
(SW), and hence it achieves a small world. Precisely, the experimental results indicate that the
diameter of the resultant k-tree of n vertices is proportional to o(logn), as k increases. This
is an advantage of the scale free interval graphs in [6]; their model generates scale free interval
graphs of n vertices width diameter O(n).

We assume that the reader is familiar to the notion of probability and graph theory. In
this short note we prove Theorem 1, briefly discuss Theorem 2 and give experimental results
supporting Theorem 1 and our hypothesis regarding diameter.
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2 Proof of Theorem 1

To prove the theorem, we first show the following lemma:s:

Lemma 3 Let vy be the vertex added to Gi(t) at time t. For any t' > t, let £ be the number of
Kj.11 that contain ve. Then the clustering coefficient at vy in Gi(t') is

2)
(5) + (k—1)(¢ —1)
CC(v) = =2 (k=110 :
(")
Proof. Suppose that at time ¢ > 1, we add a vertex v; and join it to each vertex ui,...,u; in

the clique f; of size k chosen in step 5 in the clique Dy of size k+ 1 chosen in step 4. Then G(t)
contains k + ¢ vertices. We call each induced clique K}, in G(t') a face of G(t'), and define the
degree of a face f by the number of K} containing f, that is denoted by deg, (f). At time ¢, we
add a new clique @ = K1 by joining v; to an existing face f;. Thus deg,(f;) = deg,_;(f:) +1
since f; is in Q.

We define face degree Deg, (v) of a vertex v by the total face degree of all faces incident
with v. That is, Degy(v) = >_,crdegy(f). Initially, when v is added at time ¢, Degy(v;) = k
as there are k faces containing vy, i.e., @ = Kj41 contains k K} subgraphs with distinguished
vertex v (delete any of the k edges incident with v). Extending a face f to Kxy1 adds one to
deg(f) (since it is now in an extra K1) and k — 1 extra faces at v; of face degree 1. Thus
Deg, (v) = k¢, where ¢ be the number of Ky, that contain v;.

At time ¢, we denote the set of neighbors of v by Ny (v), and define dy/(v) = [Ny (v)| (that is,
dy is the ordinary degree of v in G(t)). When v is added to Gg(t), we have d¢(vy) = Deg(vy) =
k. Each time a face containing v; is extended the face degree of v; increases by k, but the vertex
degree of v; only increases by 1. Hence dy/(vy) = (k — 1) + Degt#’(‘“).

Now we define triangle degree A, of v by the number of K3 in the subgraph induced by
{v}UN(v). That is, CC(v) is given by ((ﬁ—:). Initially, when v; is added to Gj(t) it is contained

2
in a unique Kjii1(= @), and the k edges incident at v induce (g) triangles. Suppose face
ft = K, incident with vy, is extended to a K1 at step . Face f already has k — 1 edges vu;

with i =1,...,k—1, each of which will form a new triangle (vy vy, vyu;, viu;) with the new vertex
vy. Thus A,, = (g) + (k —1)(dy (v) — k). Therefore if Degy (v:) = k€ then dy(ve) = (k— 1) + ¢
and A,, = (g) + (k—1)(¢ —1). Since CC(v:) = %, the lemma follows. 1
We now turn to the clustering coefficient of a graph Gy (t), which is defined by CC(Gg(t)) =
Yo CISF(:) . Let fgr, be the limiting proportion of vertices of face degree ¢k and ng_14, the limiting

proportion of vertices of degree k — 1 4+ £. Then we have fy, = nr_1.¢ and hence

k
. +(k-DE-1)
Jim CC60) = 3 fu () g )
>1 2

Next we analyze fy:
Lemma 4
(¢ — Dk +1)
[l (G +DEk+1)
Proof. For t > t/, the relationship between vertex degree and face degree of a vertex vy is given

by di(vy) = (k—1) + DegtT(vf'). Thus it suffices to study face degree Deg,(vy) of the vertices vy
of Gk (t)

foo = (2)
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Let F;(Gk(t)) be the number of vertices of face degree ¢ in Gg(t) at the end of time ¢, and
let F;(t) be its expected value.

Recall that we make G (t + 1) from Gg(t) by picking a D41 = Kj41 uniformly at random
from Gy(t) with probability %, and then picking a face f;+1 = Kj uniformly at random from
Dy 41 with probability k%rl This process in fact picks faces proportional to their degree. This
can be seen as follows. Suppose face f has degree ¢ and thus occurs in ¢ distinct Kjy;. Then

Pr(f is chosen) = 50

Similarly, Pr(face incident with v chosen) = %jitl(;” t).
On adding vertex vy 1, the number of vertices of face degree ¢ is updated as follows:

Fi(Gi(t+1)) = Fi(Ge(t)) + 1(i=k)+ > 1(v is in chosen face)
Deg, (v)=i—k
- Z 1(v is in chosen face),
Deg, (v)=t

where 1(H) is the indicator for the event H. On taking expectations over the random choices
made by the process on the given graph Gi(t), we obtain
(i = k) Fip(Gr(t) i Fi(Gr(t))

Fy(Gr(t+1)) = F;(Gi(t)) + CES ECESY +1(i = k).

On taking expectations over all processes Gi(t), we obtain the following recurrences, which are
valid for i = £k, £ > 1.

Fi(t+1) = Fk(t)—kl—(l::]j(lt))t
Fi(t+1) = Fi(t)+(z_(kleigf(t)—(;I:i_(?)t (i > k).

Now we use the following lemma on real sequences [4, Lemma 3.1]:

Lemma 5 ([4, Lemma 3.1]) If (ay), (B) and () are real sequences satisfying the relation

Qpp1 = (1 — ﬁt) o+ Ve,

where limy o0 By = > 0 and limy_oo ¢ = 7y, then limy oo G exists and equals ﬁ

Using Lemma 5, we have

ng(t> B (ﬁ — 1)”#71(/‘& +1)

e T L (G DR+ )

= fok-

|

Theorem 1(i) now follows Lemma 4, and taking the limit of equation (2) gives the claimed

power law. Theorem 1(ii) follows from inserting equation (2) into relationship equation (1). It
can be see directly that for k > 2, ¢(k) > 3. For the value of ¢(k), when k — oo, we see that

1
)H;£(€+1):
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3 Proof of Theorem 2

We give a brief outline of the proof. Recall that F;(G(t)) be the number of vertices of face
degree i in G(t) at the end of time ¢. The whp convergence of F;(Gy(t)) to fit(1+ o(1)) can
be established by standard methods e.g. [8]. This holds for ¢ < ¢, where a is some positive
constant. This establishes that the proportion of vertices of degree i in the finite process G (t)
is close to its limiting value. The value of the clustering coefficient follows directly from this.
As regards the diameter, a crude calculation suffices to establish a whp upper bound of
O(logt). Consider a shortest (edge) path v, uy, ..., u;,v9 back from v; to a root vertex vy in
G1(t). As half of the K11 in Gi(t) were added by time ¢/2,
_ deg, (G (t/2))

Pr(v; chooses a face f in Gi(t/2)) = T (k+ 1)t 2

1
7
Thus the expected distance to the root must be (at least) halved by the edge viu;. Whatever
the label s of w1 = v, this halving occurs independently at the next step. This must terminate
whp after clogt steps, for some suitably large constant ¢, as we now prove.

Let Z; be an indicator variable for the event that the distance to the root halves at step
i, (conditional on not being at the root), or Z; = 1 identically, if we have arrived at the root.
Then Pr(Z; =1) > 1/2, and S; = Z; + - - - + Z; stochastically dominates the binomial random
variable B ~ Bin(j,1/2). As Pr(B < j/4) = O(e77/1%), then after j = clogyt steps, where
¢ > 4 we conclude whp that we have arrived. Thus whp DIAM(G(t)) = O(logt).

4 Experimental Results

Algorithm 1 can be implemented easily. In this section, we give experimental results for the
three properties (SF, CC, SW) of scale free networks and small world networks. Although scale
free property and cluster coefficients are checked on a usual PC, we used a supercomputer (SGI
Altix 4700: 96 Processors with 2305GB Memory) to experiment for small world property with
huge n.

Small world property

The first property is the property of a small world. This property implies that any two nodes
on the network is connected by a relatively short path. The experimental results are shown in
Figure 1. The figure implies that any pair of two nodes in a scale free k-tree of n vertices in our
model seems to be joined by a very short path, possibly even of length less than O(logn/logk).
To observe this, we also plot the number of vertices and the value of (diametersx logk) in
Figure 2. From these experimental results, we conjecture that the diameter of a random k-tree
is proportional to ©(logn/logk).

Scale free property

As shown in Theorem 1(1), the distribution of degrees follows power law on the resultant k-tree
in asymptotically. The experimental results imply that convergence to the asymptotic degree
distribution occurs rapidly. In Figure 3, we randomly generate a k-tree of n = 100000 vertices
for kK = 3,5 and 10.
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Figure 1: Diameters for scale free k-trees for k = 2,3, 5,10, 20, and 50.
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Figure 2: (Diametersx log k) for scale free k-trees for k = 2,3, 5,10, 20, and 50.
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Large cluster coefficients

As shown in Theorem 1(2), the limiting expected clustering coefficient c(k) converges to 1
for sufficiently large k. In Figure 4, we generate k-tree of n = 10000 vertices and note the
convergence to the asymptotic result.
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