
IPSJ SIG Technical Report

Light-weight Slices Employing Linux Containers
To Support Flexibility of CoreLab

RYOTA OZAKI†1 and AKIHIRO NAKAO †2,†1

Network testbeds are evolving with recent virtualization technology such as virtual ma-
chine monitors and resource containers. Isolating resources with such virtualization tech-
nology, a network testbed provides a slice, a set of resources allocated across the Internet
to harness execution of experimental network services. We have been developing CoreLab
that aims to enhances PlanetLab, one of the most popular planetary-scale network testbeds,
which is designed to provide performance, isolation, scalability of sliced execution envi-
ronments. CoreLab considers two additional design principles such as flexibility and code-
re-usability. It currently leverages a hosted virtual machine monitor to allow an arbitrary
operating system in a slice, in such a way that the host environment can keep up with the
latest devices and processors, unlike in PlanetLab that relies on the resource container called
Linux-VServer that requires patches to the non-latest host kernel. In this paper, we explore
the space for another kind of resource container approach that follows our design principles
in CoreLab development. We posit that supporting various kinds of virtualization technolo-
gies could satisfy arbitrary requirements for experiments, ranging from high performance to
flexible execution environments. The paper reports preliminary evaluation and investigation
as to whether Linux Containers satisfy our design principles.

1. Introduction

Recent rapid progress in virtualization technology allows us to run each instance of op-
erating system in an isolated environment without interference from the other. Isolation
has become a key feature in implementing an emerging network test-bed for developing,
deploying and experimenting with a new and possibly disruptive network services.

We are developing CoreLab19),20), an emerging network test-bed that enhances Plan-
etLab (PL)7), the most popular and successful network test-bed to date. PL is designed
to provide performance, isolation, scalability of execution environments, and uses the

†1 New Generation Network Research Center, National Institute of Information and Communications Tech-
nology

†2 Interfaculty Initiative in Information Studies, Graduate School of Interdisciplinary Information Studies,
The University of Tokyo

resource container called Linux-VServer (VS)16) to harness multiple concurrent experi-
ments. On the other hand, CoreLab considers two additional design principles such as
flexibility and code-re-usability. It currently leverages the hosted virtual machine moni-
tor (VMM) called Kernel-based Virtual Machine (KVM)10) to accommodate an arbitrary
operating system in a slice, a set of resources allocated across the Internet to harness ex-
ecution of experimental network services. We leverage KVM and the other supporting
software so that we can keep up with the latest devices and processors, unlike in Plan-
etLab where the host kernel is limited to the version 2.6.22 due to a large amount of
patches to enable VS.

However, virtual machine (VM) techniques usually sacrifice performance and scala-
bility of the execution environments over the flexibility. For example, VM techniques
such as KVM consumes more memory than container approaches and can support less
number of slices for a given hardware. Although there exist several attempts to address
this disadvantage8),32), it is generally difficult to overtake containers in this aspect. We
address this issue by supporting a variety of virtualization technologies simultaneously,
from containers to hosted virtual machines, to compensate for drawbacks of one another.

This paper reports our consideration of adding a container to CoreLab. We investi-
gate Linux Containers15), shortly LXC, an implementation of containers in Linux, that
leverages only built-in functions of the Linux kernel and does not require any patches
to the kernel. Using LXC instead of VS may allow CoreLab to use the latest kernel and
support for new devices and processor capabilities, thus satisfies our design principle of
code-reusability. The paper also reports preliminary evaluation of network performance
and resource consumption in our prototype implementation with LXC, and investigates
whether Linux Containers satisfies our design principles except for flexibility.

The rest of this paper is organized as follows. Section 2 describes an overview of
CoreLab. Section 3 describes motivations of this research. Section 4 describes common
overview of container techniques and Section 5 elaborates on Linux Containers. Section
6 describes our implementation details. Section 7 reports results of primary evaluations.
Section 8 and Section 9 discuss further improvements of LXC and related work, respec-
tively. Section 10 briefly concludes the paper.

2. CoreLab

CoreLab19),20) is an emerging network testbed enhanced from PL and deployed on

1 c© 2009 Information Processing Society of Japan

Vol.2009-ARC-183 No.20
Vol.2009-OS-111 No.20

2009/4/23

IPSJ SIG Technical Report

JGN2Plus13) and SINET networks. Although CoreLab inherits code base from PL29), it
is designed to overcome well-known limitations in PL such as inflexibility in execution
environments19),20).

CoreLab leverages KVM, a hosted VMM (Type-II) utilizing hardware assist, such as
Intel VT-x31) and AMD-V1) and a user space software piece called QEMU3) that emulates
device I/O operations and provides user interface. It also leverages para-virtualization
to boost I/O operations and gains I/O performance24),25).

As briefly noted in Section 1, following our design principles we employ a combina-
tion of established and thus well-debugged pieces of software as well as hardware accel-
erations, e.g., KVM, MyPLC, libvirt28), Bittorrent4), VNC (embedded within QEMU3)),
nagios18), and Linux networking tools and kernel extensions like netfilter and iptables.

3. Motivations

In this paper, we primarily focus on incorporating a container approach into CoreLab
as one of the various virtualization techniques we intend to support in future. We have
three motivations to do that.

First, it is not easy to predict demands for testbed features from developers of network
services. Although hosted VMMs may provide flexible development environments than
containers, containers could achieve high performance sacrificing flexibility. Consider-
ing that we do not have one-size-fit-all type of virtualization technology yet at this point,
it is best to prepare various kinds of virtualization techniques simultaneously.

Second, it is good to support a variety of hardware platform to run our node software
to enable execution environments. One of the most important features of planetary-scale
test-beds is to support heterogeneity of platforms.

Finally but most importantly, we must follow one of our design principle of code-
reusability. We must keep up with the latest technology for the host environment to
fulfill our motivations listed above.

Keeping these in our mind, we decide to explore the space for another container ap-
proach called LXC as one candidate for a multitude of virtualization techniques we
intend to support in CoreLab.

Table 1 Classes of resources and their examples.
Sharable Non-sharable

Separable files (RO or COW) files, PID, IPC
Non-separable CPU, memory kernel core

4. Containers

4.1 Overview
Containers is known as a kind of virtualization techniques. Like VM techniques, it

allows multiple OS instances to run on a physical machine simultaneously. Its ability is
fairly similar to VM techniques, however, the internal is very different from VMs’.

A VM technique creates an illusion of a physical (sometimes pseudo) machine to
served OSes and by doing so multiple OSes can run on a single machine. On the other
hand, a containers technique just divides its OS resources into multiple sub-instances.
In fact, the only one OS kernel is running on the top of a physical machine at given time.
Nonetheless, from a view of applications or users, they expect that they own their OS
and machine resources such as CPU, memory, disk, and even network resources.

Benefit in using containers instead of VMs is a combination of performance and low
resource consumption, while drawback is inflexibility of execution environment, since
they must inherit the single host environment. Application processes inside a container
are almost the same as ordinary processes on an ordinary OS, thus, there is few overhead
of virtualization even the case of I/O operations. Furthermore, container techniques
can share resources more easily than VM techniques. For example, traditional memory
sharing techniques that are usually used in shared libraries and processes are able to be
leveraged among containers.

However, container techniques have several limitations due to that running OSes ac-
tually shares the same kernel image. Also inside the container, users are usually not
allowed to modify parameters of the kernel, insert additional kernel modules, setup net-
work filtering rules and routing tables?1, etc.

2 c© 2009 Information Processing Society of Japan

Vol.2009-ARC-183 No.20
Vol.2009-OS-111 No.20

2009/4/23

IPSJ SIG Technical Report

4.2 Resource isolation and protection
This subsection describes how OS resources are isolated in containers. Table 1 classi-

fies resources in an OS with the points of sharable and separable among containers.
Most resources are named and structured by the kernel, i.e., the resources are separa-

ble. The resources are relatively easy to be isolated by separating namespace of them.
For example, a filesystem can be separated by its sub-directory. It is usually conducted
by chroot system call in ordinary Unix-like OSes. For another example, process ID
namespace of each container is separated so that the init process of each container can
have process ID 1.

Several separable resources are able to be also sharable. Some files can be shared
among containers, for example system binaries (e.g., files under /bin, /sbin) and libraries
(e.g., files under /lib, /lib64) using read-only bind mount or a whole filesystem using
COW capability of a filesystem.

On the other hand, in the case of non-separable resources, we need a mechanism to
share them or protect from containers. Several resources are shared through time or
space division. The resources should be given to each container fairly through account-
ing resource consumptions of each container preciously. For example, CPU consump-
tion is accounted by a set of processes in a container not by a process.

Remaining resources are non-separable and shared among containers, thus, they
should not be accessed by containers. For example, kernel parameters and kernel mod-
ules inside the kernel should be protected from containers. Even an administrative user
in a container should not be allowed to access the protected resources inside the kernel.

5. Linux Containers

5.1 Overview
Linux Containers, shortly LXC15), is an implementation of container in Linux. Unlike

the other containers, VS and OpenVZ23), LXC leverages the capabilities of vanilla Linux
instead of additional code that requires patches to the kernel. The advantage of the
approach is that it can leverage capabilities of latest kernels, e.g., new features of the
kernel, applications and libraries for the features, and device drivers for new devices.

?1 It depends on a setting of containers. OpenVZ allows it with a normal setting, however, PlanetLab does
not allow.

LXC can be divided into user space tools and kernel components. There are two user
space tools, lxc15) and libvirt28). Both tools enables to manage containers with formal
configuration files, command-line tools, or a special shell. The capability inside the
kernel for LXC is implemented with the combination use of several components.

5.2 Components of LXC
LXC utilizes capabilities of namespace separation, control groups (cgroups)14), and a

security module in the Linux kernel.
Namespace separation: The latest Linux, version 2.6.29 at this time, can separate the

following resources.
• hostname
• PID
• IPC
• User (UID/GID)
• Network
• pseudo filesystems (procfs, sysfs, and devpts)
• filesystems (mount points)
Since network resources can be separated, each container has individual network re-

sources, such as network interfaces, routing tables, etc.
Cgroups: It is a general facility to control resources in Linux. It allows the admin-

istrator to group processes with hierarchical structures and control several resources as-
signments, allocations, and limitations according to the grouped processes. Device files,
a set of CPUs, and amounts of memory are controlled using cgroups.

The above two are must and actually used in both lxc and libvirt, however, there re-
mains some critical resources faced on unexpected accesses by containers as mentioned
in Section 4.2. Therefore, we need to protect the critical resources in the kernel with
somewhat additional facilities. There are several candidates of security modules to ad-
dress the problem, for example POSIX capabilities11), SELinux26), SMACK6), etc.

6. Implementation

In this section, we describe a candidate implementation of LXC-based slices.
6.1 LXC management
We use libvirt to manage LXCs as well as KVM that CoreLab currently supports.

Libvirt provides a common API set to manage several virtualization techniques such as

3 c© 2009 Information Processing Society of Japan

Vol.2009-ARC-183 No.20
Vol.2009-OS-111 No.20

2009/4/23

IPSJ SIG Technical Report

Host

IP ports

Guest

IP ports
22

22
#1

#2

DNATed

1 65535

Fig. 1 IP ports assignments.

KVM, LXC, Xen, and OpenVZ. As a result we could mostly reuse the code base for
KVM.

6.2 Network configuration
A container of LXC is connected to the host with veth (Virtual ETHernet) that is a pair

of ethernet devices connected each other in point-to-point where each ethernet device has
MAC and IP addresses. We configure both with private IP addresses and make NAT on
the host to allow the container to access outside networks. On the other hand, the case
of accesses from outside, we assign a range of IP ports to each container and forward
packets within the range to the corresponding container using DNAT20) where the lowest
port is reserved to ssh (Fig. 1).

In this configuration, an individual ssh server run in each container where PL runs a
ssh server that is modified to redirect a login user for the corresponding container with
a trick in the ssh server and the login shell.

6.3 Base Filesystems
To make a container an individual OS instance, the container needs to have its own

filesystem that includes binaries, libraries, and configuration files. Although other con-
tainer implementations have their own tool to build a filesystem for a container, LXC
does not have such a tool yet.

Instead of using a special tool, we reuse VM disk images for KVM-based slices. We
disseminate VM disk images using BitTorrent4) to CoreLab nodes20). We extract con-
tained files from a downloaded VM disk image and use the files as a base filesystem.

As mentioned above, each container requires an individual filesystem, however, copy-

Base image Base filesytem

Derived images Derived filesystems

Extracted

Backing store

KVM instances LXC instances

COW

qcow2 format btrfs

COW

Actual consumed

data in the disk

Fig. 2 A base filesystem and derived filesystems.

ing a whole base filesystem for every containers is clearly inefficient. We leverage the
COW feature of btrfs5). Btrfs can have sub-volumes in a btrfs volume and take a snapshot
of a sub-volume at any time. The snapshot can share data with the original sub-volume
in the disk until data is modified. The modified data is duplicated and stored as another
data in the disk. Assigning each container to a snapshot inherited from a sub-volume
that contains a base filesystem can reduce disk usage (Fig. 2).

6.4 Privileges of containers
We currently prevent accesses of containers to the critical resources in the kernel using

POSIX capabilities. It is a kind of functionalities to realize least privilege9) for adminis-
trative users and processes. It divides the root privilege into small pieces and allows to
assign a set of them (or all of them, i.e., the case of ordinary root user) to a process. The
privilege assigned to a process is inherited to descendants of the process?1.

We drop several capabilities of the init process in every containers before its ex-

?1 To be precise, the privilege is decided with capabilities assigned to a process and the execution file of the
process. However, if no capability is assigned to any files in a container and CAP SETFCAP is dropped
in the init process in the container, it is guaranteed that any processes in the container never gain dropped
capabilities again.

4 c© 2009 Information Processing Society of Japan

Vol.2009-ARC-183 No.20
Vol.2009-OS-111 No.20

2009/4/23

IPSJ SIG Technical Report

ecution, for example CAP SYS BOOT, CAP SYS ADMIN, CAP SYS MODULE,
CAP MKNOD are dropped for safe.

6.5 Miscellaneous
An ordinary OS starts the init process as the first user process and then the init initial-

izes environments and runs system services. However, the init is overkill in the case of
a container. For example, mounting pseudo filesystems and creating device files that are
usually responsible for the init to do are conducted by libvirt. Instead of using the init,
we use a simple shell script that just starts several services such as dhclient, rsyslogd,
and sshd and then transforms a shell to serve accesses through a console from the host,
which is actually not used in usual operations except for debugging. They are minimal
and enough to make a container usable in CoreLab.

We need a trick to run 32-bit programs in a container of LXC on a machine running
a 64-bit kernel, even the kernel enables 32-bit emulation mode. Because Linux cannot
fake the architecture of processors, i.e., uname syscall returns the architecture of the ker-
nel straightforward. Although most 32-bit programs can run without knowing about the
underlying architecture, some 32-bit programs are confused, for example yum, a package
management tool, that depends on the return value of uname syscall. We avoid this de-
fect by using a linker technique. Setting a library that define a function named uname in
LD PRELOAD, the function is called ahead over the original function in libc. Replac-
ing ’x86 64’ with ’i386’ in the return value of original uname by using the technique
can cheat on yum as the underlying architecture is 32-bit. Nonetheless, we think the
capability to fake the underlying architecture is needed in the kernel primitives to make
LXC more useful.

7. Evaluations

This section evaluates memory consumption and network performance both in KVM
and LXC. We set up a set of two nodes in private CoreLab deployed in a closed LAN.
Each node has one 2.66 GHz dual core processor (Intel Xeon x3070) and 4 GBytes
memory and connects over Gigabit Ethernet network with each other. We use linux-
2.6.29-rc8 as the kernel with kvm-83 loaded. Note that VMs in CoreLab are equipped
with a para-virtualized driver, called virtio25).

7.1 Resource consumption
We compare memory and disk consumption on LXC and KVM. We increase the num-

 0

 20

 40

 60

 80

 100

 0 50 100 150 200
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

M
em

or
y

us
ag

e
(%

)

D
is

k
us

ag
e

(M
B

yt
es

)

of containers

Resource consumptions (lxc)

mem
swap
disk

Fig. 3 Resource consumption on LXC.

ber of containers/VMs ranging from 0 to 200 by 5 and estimate increasing amount of
disk usage and ratio of used memory and swapped memory to the available memory.

Figure 3 and 4 show the results on LXC and KVM, respectively. In both graphs, the
x axis indicates the number of containers/VMs, the left y axis indicates percentages of
memory usages, and the right y axis indicates increasing amounts of disk usage.

Although not surprising, the result shows that resource consumption of LXC is lower
than those of KVM. LXC leaves free memory until the number of containers increases
up to 110 where KVM consumes entire memory up by the number of VMs reached
30. Furthermore, after consuming the entire memory, LXC does not cause swapping
mostly where KVM causes it when 40 of VMs launches. This is thanks to the facility
of memory sharing in the kernel and the COW feature of btrfs. The former enables
to share the memories used by processes in every containers and the latter suppresses
increasing amount of disk usage only meta data that are not shared in btrfs. As a result,
LXC could scale up hundreds of containers. On the other hand, KVM ends up booting
VMs anymore after swapped memory has reached the maximum size of the swap.

Note that the resource consumption in this evaluation is absolute minimum and run-
ning process inside containers/VMs will increase the consumptions.

5 c© 2009 Information Processing Society of Japan

Vol.2009-ARC-183 No.20
Vol.2009-OS-111 No.20

2009/4/23

IPSJ SIG Technical Report

 0

 20

 40

 60

 80

 100

 0 50 100 150 200
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

M
em

or
y

us
ag

e
(%

)

D
is

k
us

ag
e

(M
B

yt
es

)

of VMs

Resource consumptions (kvm)

mem
swap
disk

Fig. 4 Resource consumption on KVM.

Table 2 Throughput (Mbps)
Average Minimum Maximum

Vanilla Linux 940 940 941
PlanetLab 941 941 942
LXC 931 901 934
KVM (virtio) 604 492 702

7.2 Throughput
We compare the throughput on KVM and LXC as follows. We run iperf server and

client in each VM and container. In this evaluation, we run iperf during seven minutes
and do not account the first three minutes to get rid of the effect of TCP slow-start. We
also sample the throughput every 10 seconds to be used for estimating the minimum and
the maximum in addition to the average.

Table 2 shows the comparison among vanilla Linux, PL, LXC and KVM in terms
of TCP throughput between two nodes measured by iperf. The case for the vanilla
Linux is added to show the baseline throughput. It is clear that PL and LXC gains the
comparable throughput with vanilla Linux, while KVM achieves about 60 percent of the
performance on average. The reason that the throughput of LXC is a bit lower than PL
is difference in the network configuration. In PL, all container shares a physical network

interface where LXC’s setting assigns an individual network interface to each container
and routes packets from/to corresponding containers. Thus, we currently believe that the
overhead of routing is appeared in the difference between two results.

8. Discussion

We believe that LXC is a potential implementation of containers, however, it is not
practically mature at this time and requires further improvement. The most important
concern to incorporate LXC into CoreLab is security isolation. Unlike VMs offered by
KVM, containers have potential issues in security isolation due to its architecture. We
must not disclose a way to jail-break to users in any containers.

We summarize behaviors inside a container and functionalities of each container im-
plementation in Appendix A.1. This investigation shows that LXC remains several holes
to be fixed even though most of them are not critical defections.

Furthermore, there remains another concern about performance isolation. One con-
cern is that LXC does not have quota supports of disk usage by a container in LXC itself.
We need to cap disk space to protect malicious uses in a container. There are two possi-
ble solutions to this issue; one is to use Logical Volume Manager (LVM) and the other is
to use btrfs that is actually not available at this time and will be available in near future.
Using LVM as a storage pool and a fixed partition as a storage volume for a container,
we can set the upper limit of a disk usage by a container. However, this method cannot
leverage the COW capability. On the other hand, btrfs has a plan to implement quota
per sub-volume/snapshot ?1. We believe that this method will be one of most dominant
solutions for the issue.

Yet another concern is that capability is missing to limit disk I/O bandwidth by a con-
tainer. Linux already has a capability to control the bandwidth using ionice, however, it
just sets a priority of I/O requests. Furthermore, we also need to cap network bandwidths
as well.

9. Related Work

Linux-VServer (VS) is one of the earliest implementations of the container for Linux.
It supports minimal capabilities for a container, such as namespace separations, pretty-

?1 http://btrfs.wiki.kernel.org/index.php/Development timeline

6 c© 2009 Information Processing Society of Japan

Vol.2009-ARC-183 No.20
Vol.2009-OS-111 No.20

2009/4/23

IPSJ SIG Technical Report

enhanced POSIX capabilities, etc. It has been used in PlanetLab and thus demonstrated
its capabilities and effectiveness.

OpenVZ is an implementation of containers newer than VS. It enhances virtual net-
working and resource controls than VS. Additionally, live migrations of containers are
supported and the feature makes OpenVZ unique among container implementations.

Both implementations have not been merged in the mainline Linux kernel?1, therefore,
it requires patches for the kernel. This drawback is against our design principles of
CoreLab. We must avoid the case where the latest development in the kernel may not be
hindered by some underdeveloped features. For example, KVM enhances its memory
swapping of guests by the kernel 2.6.27, however, VS and OpenVZ for that version are
not available.

Xen is a hypervisor that serves multiple VM instances on a physical machine2). It
fully leverages para-virtualization techniques to boost performance, and gains compa-
rable performance to native OSes. Although it might realize both flexibility and high
performance, it is not keeping up with the latest host kernel but with only the version
2.6.18.

OpenSolaris natively supports containers called Solaris Containers (SC)22). SC is su-
perior than LXC on several capabilities at this time. SC has sophisticated management
tools and a mature COW-capable filesystem called zfs. OpenSolaris also supports a
hosted VMM, Sun xVM VirtualBox27). In theory, OpenSolaris may become one of the
candidates to support in CoreLab. However, our goal is to support a variety of virtu-
alization techniques to achieve flexibility, not just a container approach. We must also
consider compatibility of the management software to federate with the other PlanetLab
based test-bed such as OneLab21), EverLab12) and G-Lab30). That said, we may consider
SC as a candidate virtualization technology to support in CoreLab in near future.

10. Conclusion

Network testbeds have evolved with recent virtualization technologies such as virtual
machines and containers.

In this paper, we evaluate LXC as a candidate container approach to be supported in

?1 Some capabilities in OpenVZ such as veth have been merged in the mainline kernel and LXC leverages
them.

CoreLab. Although LXC still leaves room for improvements, it seems to satisfy our
design principles in CoreLab and to let CoreLab keep up with the latest host kernel.

The contributions of this paper are two-fold. First, we have evaluated a container
technology that follows our design principles in CoreLab development. If this approach
becomes mature, we can support two type of virtualization techniques, KVM and LXC,
thus increases the flexibility of execution environment. Second, we have implemented
a prototype of container based slice using LXC and have conducted preliminary evalua-
tions.

References

1) AMD: AMD64 Virtualization Codenamed “Pacifica” Technology, Secure Virtual Machine
Architecture Reference (2005).

2) Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt,
I. and Warfield, A.: Xen and the art of virtualization, Proc. the 19th ACM Symposium on
Operating Systems Principles (SOSP ’03), pp.164–177 (2003).

3) Bellard, F.: QEMU, a Fast and Portable Dynamic Translator, Proc. USENIX 2005 Annual
Technical Conference, FREENIX Track, pp.41–46 (2005).

4) BitTorrent, Inc.: BitTorrent. http://www.bittorrent.com/
5) Btrfs. http://btrfs.wiki.kernel.org/
6) Casey Schaufler of California: SMACK: The Simplified Mandatory Access Control Kernel

for Linux. http://schaufler-ca.com/
7) Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M. and Bowman,

M.: PlanetLab: an Overlay Testbed for Broad-coverage Services, ACM SIGCOMM Computer
Communication Review, Vol.33, No.3, pp.3–12 (2003).

8) Diwaker, G., Sangmin, L., Michael, V., Stefan, S., Alex, S.C., George, V., Geoffrey, V.M.
and Amin, V.: Difference Engine: Harnessing Memory Redundancy in Virtual Machines,
Proc. of 8th USENIX Symposium on Operating System Design and Implementation (OSDI
’08), pp.309–322 (2008).

9) Fred, S.B.: Enforceable security policies, ACM Transactions on Information and System
Security (TISSEC), Vol.3, No.1, pp.30–50 (2000).

10) Kivity, A., Kamay, Y., Laor, D., Lublin, U. and Liguori, A.: kvm: the Linux Virtual Machine
Monitor, Proc. Ottawa Linux Symposium 2007 (OLS ’07), pp.225–230 (2007).

11) Hallyn, S.E. and Morgan, A.G.: Linux Capabilities: making them work, Proc. Ottawa Linux
Symposium 2008 (OLS ’08), pp.163–172 (2008).

12) Jaffe, E., Bickson, D. and Kirkpatrick, S.: Everlab-A Production Platform for Research in
Network Experimentation and Computation, Proc. of the 21st Conference on 21st Large In-
stallation System Administration Conference, pp.203–213 (2007).

13) JGN2plus. http://www.jgn.nict.go.jp/
14) libcg: Control Group Configuration Library. http://libcg.sourceforge.net/

7 c© 2009 Information Processing Society of Japan

Vol.2009-ARC-183 No.20
Vol.2009-OS-111 No.20

2009/4/23

IPSJ SIG Technical Report

15) Linux Containers. http://lxc.sourceforge.net/
16) Linux-VServer. http://linux-vserver.org/
17) Menon, A., Cox, A.L. and Zwaenepoel, W.: Optimizing Network Virtualization in Xen,

Proc. 2006 USENIX Annual Technical Conference (USENIX ’06), pp.15–28 (2006).
18) Nagios Enterprises, LLC.: Nagios: The Leader and Industry Standard in Enterprise System,

Network, and Application Monitoring. http://www.nagios.org/
19) Nakao, A., Ozaki, R. and Nishida, Y.: Building a Flexible Overlay Network Testbed with a

Hosted Virtual Machine Monitor, Proc. of 20th Computer System Symposium 2008 (ComSys
’08), pp.13–22 (2008).

20) Nakao, A., Ozaki, R. and Nishida, Y.: CoreLab: An Emerging Network Testbed Employing
Hosted Virtual Machine Monitor, Proc. of ACM 3rd International Workshop on Real Overlays
& Distributed Systems (ROADS ’08) (2008).

21) OneLab. http://www.one-lab.org/
22) Price, D. and Tucker, A.: Solaris Zones: Operating System Support for Consolidating Com-

mercial Workloads, Proc. 18th Large Installation System Administration Conference (LISA
’04), pp.241–254 (2004).

23) OpenVZ. http://openvz.org/
24) Ozaki, R. and Nakao, A.: Analysis of Network I/O Performance in KVM, Proc. of IPSJ SIG

Technical report, 2008-OS-107, pp.111–118 (2008).
25) Rusty Russell: virtio: towards a de-facto standard for virtual I/O devices, ACM SIGOPS

Operating Systems Review, Vol.42, No.5, pp.95–103 (2008).
26) Smalley, S., Vance, C. and Salamon, W., Implementing SELinux as a Linux security module,

NAI Labs Report, Vol.43, No.1 (2001).
27) Sun Microsystems, Inc.: VirtualBox. http://www.virtualbox.org/
28) The Virtualization API. http://libvirt.org/
29) The Trustees of Princeton University: MyPLC. http://www.planet-lab.org/doc/myplc
30) Tran-Gia, P.:G-Lab: A Future Generation Internet Research Platform.

http://www.future-internet.eu/
31) Uhlig, R., Neiger, G., Rodgers, D., Santoni, A.L., Martins, F.C.M., Anderson, A.V., Bennett,

S.M., Kagi, A., Leung, F.H. and Smith, L.: Intel Virtualization Technology, IEEE Computer,
Vol.38, No.5, pp.48–56 (2005).

32) Waldspurger, C.A.: Memory Resource Management in VMware ESX Server, Proc. of the
5th Symposium on Operating Systems Design and Implementation, pp.181–194 (2002).

Appendix

A.1 Detailed comparison among container implementations
(1) machine: The architecture type cannot be changed.
(2) syslog: LXC discloses dmesg.
(3) network: This indicates network traffics can be isolated.

Table 3 Detailed comparison among container implementations

LXC: Linux Containers
VZ : OpenVZ
VS : Linux-VServer

LXC VZ VS Notes
hostname o o o
machine x x x (1)
syslog = o o (2)

network o o o (3)
kernel version = = = (4)

disk size = o o (5)
quota = o o (6)

mount points o o o
memory = o = (7)

sysfs = o – (8)
procfs x o = (9)
devpts o o o (10)
tools = o o
freeze o o x (11)

Checkpoint/Restart x o x (12)
live migration x o x

PID o o x (13)

(4) kernel version: VZ and VS need kernel patches. LXC needs latest kernel.
(5) disk size: LXC discloses host disk sizes.
(6) quota: LXC depends on the underlying filesystem.
(7) memory: LXC and VS discloses the host memory size although it is capped.
(8) sysfs: LXC and VS discloses host’s resources although they are protected.
(9) procfs: LXC discloses host information and some parameters are writable al-

though we can make whole procfs read-only.
(10) devpts: LXC supports devpts separation from kernel 2.6.29
(11) freeze: This indicates whether be able to stop a container that includes all process

inside the container.
(12) Checkpoint/Restart: The feature is being prepared and might be available in LXC

in near future
(13) PID: VS is shared PID namespace among containers and the host

8 c© 2009 Information Processing Society of Japan

Vol.2009-ARC-183 No.20
Vol.2009-OS-111 No.20

2009/4/23

