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A term tree is an ordered tree pattern, which have ordered tree structure and variables,
and is suited for a representation of a tree structured pattern. A term tree ¢ is allowed to
have a repeated variable which occurs in ¢ more than once. In this paper, we consider the
learnability of finite unions of term trees with repeated variables in the exact learning model
of Angluin (1988), which is a mathematical model of learning via queries in computational
learning theory. We present polynomial time learning algorithms for finite unions of term
trees with repeated variables by using superset and restricted equivalence queries. Moreover
we show that there exists no polynomial time learning algorithm for finite unions of term
trees by using restricted equivalence, membership and subset queries. This result indicates
the hardness of learning finite unions of term trees in the exact learning model.

1 Introduction

In the field of Web mining, Web documents
such as HTML/XML files have tree structures
and are called tree structured data.

A term tree is a rooted tree pattern which
consists of an ordered tree structure, ordered
children and internal structured variables [5, 6].
A variable in a term tree is a list of two ver-
tices and it can be substituted by an arbi-
trary tree. For example, the term tree t =

In or-
der to extract meaningful knowledge from given
data, many data mining tools need to collabo-

rate with experts or users in mining processes.
Many of such tools are designed in query learning
scheme. We are interested in clustering of het-
erogeneous tree structured data having no rigid
structure. From these motivations, in this pa-
per, we consider polynomial time learnabilities of
finite unions of tree structured patterns in the ex-

act learning model by Angluin [3].

(V4, Et, Hy) in Figure 1 is defined as follows. V; =
{’ul,...,vu}, Et = {(’01,1)2), (Uz,’l)3), (1)1,114)7
(v7,vs), (v1,v10), (vi0,v11)} Wwith root vy and
sibling relation displayed in Figure 1. H; =
{[’1)4, 'U5L [’Ulv UG]’ [Uﬁv ’U7], [’Ue, ’Ug]}.

A variable with a variable label z in a term
tree ¢ is said to be repeated if x occurs in t
more than once. In this paper, we treat a term
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Figure 1: A term tree ¢ explains a tree 7. A
variable is represented by a box with lines to its
elements. The label inside a box is the variable
label of the variable.

tree with repeated variables. In [4], Arimura et
al. discussed the polynomial time learnabilities
of ordered gapped forests without repeated gap-
variables in the exact learning model. In this
paper, we discuss polynomial time learnabilities
of finite unions of term trees with repeated vari-
ables in the exact learning model. For a tree
T which represents tree structured data such as
Web documents, string data such as tags or texts
are assigned to edges of 7. Hence, we assume
naturally that the cardinality of a set of edge la-
bels is infinite. Let A be a set of strings used
in tree structured data. Then, our target class
of learning is the class, denoted by OTF,, of all
finite sets of term trees all of whose edges are
labeled with elements in A . The term tree lan-
guage of a term tree ¢, denoted by Lx(t), is the
set of all labeled ordered trees which are obtained
from ¢ by substituting arbitrary labeled trees for
all variables in ¢t. The language represented by
a finite set of term trees R = {t1,t2,...,tm} in
OTFy is the finite union of m term tree languages
LA(R) = La(t1) ULA(t2) U ... U Lp(ty,). In par-
ticular, we define Ly () =

In the exact learning model by Angluin [3], a

learning algorithm is said to ezactly learn a tar-
get finite set R. of term trees if it outputs a finite
set R of term trees such that Ly(R) = La(R.)
and halts, after it uses some queries. In this pa-
per, firstly, we present a polynomial time algo-
rithm which exactly learns any finite set in OTF,
having m. term trees by using superset queries
for a known number m.. Secondly, we present a
polynomial time algorithm for the same setting
as above except that the number of term trees in
R, is unknown. Finally, we show that there exists
no polynomial time learning algorithm for finite
unions of term trees by using restricted equiva-
lence, membership and subset queries. This result
indicates the hardness of learning finite unions of
term trees in the exact learning model.

In the exact learning model, many researchers
[1, 2, 4, 5] showed the exact learnabilities of sev-
eral kinds of tree structured patterns. A term
tree ¢ is said to be linear (or repetition-free) if all
variable labels in ¢ are mutually distinct. In [5],
we showed the polynomial time exact learnability
of finite unions of linear term trees, denoted by
uwOTF, , using restricted subset queries and equiv-
alence queries. As other learning models, in [6],
we showed the class of single regular term trees is
polynomial time inductively inferable from posi-
tive data.

2 Preliminaries

Let X be an infinite alphabet whose element is
called a variable label, and A an alphabet where
ANX = (. We call an element in A an edge label,
and in this paper, we assume that |A| is infinite.

Let T = (Vr,Er) be an edge-labeled rooted
tree with ordered children which has a set Vp of
vertices and a set Er of edges labeled with ele-
ments of AU X. Let H; be the set of all edges
in Ep whose labels are in X. Let V; = Vp and
E; = Ep—H, (ie., E;UH; = Ep and E;NH; = 0).
A triplet t = (V4, Ey, Hy) is called a term tree, and
elements in V;, F; and H, are called a verter, an
edge and a variable, respectively. We denote by
(v,v") the edge in F; and [v,v’] the variable in
H;.

Let f and g be term trees with at least two ver-
tices. Let h = [v,v'] be a variable in f with the
variable label z and o = [u,u/] a list of two dis-



tinct vertices in g, where u is the root of g and
is a leaf of g. The form z := [g, o] is called a bind-
ing for . A new term tree f' = f{z :=[g,0]} is
obtained by applying the binding = := [g, o] to f
in the following way. Let ey = [v1,v1],...,em =
[Um, v1,] be the variables in f with the variable la-
bel z. Let g1,...,9m be m copies of g and u;, u}
the vertices of g; corresponding to u,u’ of g, re-
spectively. For each variable e; = [v;,v]], we at-
tach g; to f by removing the variable e; from Hy
and by identifying the vertices v;, v; with the ver-
tices u;, u} of g;.

A substitution 0 is a finite collection of bindings
{z1 :=g1,01], ", Tn, := [gn, on]}, where z;’s are
mutually distinct variable labels in X. The term
tree f6, called the instance of f by 6, is obtained
by applying all the bindings z; := [gi,0;] on f
simultaneously. Then the instance t6 of the term
tree t by 6 is isomorphic to the tree 7" in Figure 1.
Let t and ¢’ be term trees. We write ¢t < ¢’ if there
exists a substitution 6 such that ¢ is isomorphic
to t'6. If t X ¢’ and t is not isomorphic to ¢/, then
we write t < t'.

3 Learning model

In this paper, let R, be a set of term trees in
OTFy to be identified, and we say that the set R.
is a target. Without loss of generality, we assume
that La(R.) # La(R. — {r}) for any r € R..

We introduce the exact learning model via
queries due to Angluin [3]. In this model, learning
algorithms can access to oracles that answer spe-
cific kinds of queries about the unknown term tree
language La(R.). We consider the following ora-
cles. (1) Superset query Supg_: The input is a set
R in OTF,. If Ly(R) D Ly(R.), then the output
is "yes”. Otherwise, it returns a counterezample
t € La(R.) — La(R). (2) Restricted equivalence
query rEquivy : The input is a set R in OTF,.
The output is "yes” if Ly (R) = Lx(R.) and "no”
otherwise. (3) Membership query Memp,: The
input is a labeled tree t. The output is "yes”
if t € Ly(Ry), and "no” otherwise. (4) Subset
query Subg,: The input is a set R in OTF,. The
output is ”yes” if Ly(R) C La(R.). Otherwise,
it returns a counterexample t’ € Ly (R)— La (R.).

A learning algorithm .4 collects information
about L (R.) by using queries and output a set
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Figure 2: Linear term trees g;,9s.

R in OTF,. We say that a learning algorithm A
ezactly identifies a target R, in polynomial time
using a certain type of queries if .4 halts in poly-
nomial time and outputs a set R € OTF, such
that Ly (R) = L (R.) using queries of the speci-
fied type.

4 Learnability and Hardness

We denote by &S(r) the set of all linear term
trees which are obtained from r by replacing a
variable of r with g; or g» given Figure 2. Note
that |7/| > |r| and 7’ < r for any r’ € £S(r), and
|ES(r)| < 3|r].

Let m be a positive integer, R a set of term
trees and 7 a term tree such that m = |R.|,
Lx(R.) CLA(RU{r}) and Lp(R.) € La(R). In
the algorithm LEARN_KNOWN, the algorithm
L_OTT(m,R,r) outputs a set .S of term trees such
that S C R, and r, < r for any r, € S.

‘When the size of R. is known in advance, we
have the following theorem.

Theorem 1 If the algorithm
LEARN_KNOWN of Figure 3 takes an in-
teger m with m > |R,| as input, then it exactly
identifies a set R. € OTF, in polynomial time
with respect to n and m using superset queries,
where n is the maximum size of term trees in R..

When the size of R, is unknown, we have the
following theorem.

Theorem 2 The algorithm LEARN_OTF of
Figure 4 exactly identifies any set R. € OTF,
in polynomial time with respect to n and m, us-
ing superset queries and restricted equivalence
queries, where n is the maximum size of term
trees in R..

Finally, we show the insufficiency of learning of
OTF, in the exact learning model.



Algorithm LEARN_KNOWN
Input:  an integer m with m > |R.|;
Output: A set R € OTFp with La(R) = La(Rx);
begin
Let Rhypo := 0;
if Supg, (Rhypo) = “yes” then
output Rhypo;
else begin
Let 7 = ({u,v},0,{[u,v]}) € OTTy;
R= {T' 3 Rhypo = Rnocheck = R:
while Ryocheck # ) do begin
foreach r € Rnocheck do
if Supp, (Raypo — {r}) UES(r)) = “yes”
then begin
Rhypo 1= (Rnypo — {r}) UES(r);
Rpocheck = (Rnocheck - {7'}) U ES(T);
foreach r’ € £S(r) do begin
if Supg, (Rhypo — {r'}) = “yes” then
begin
Rhypo := Rhypo — {r'}
Rnocheck := Rnocheck — {7',};
end;
end;
end
else begin
R’ := L.OTT(m,(Rhypo — {r}) UES(r),r);
Rhypo := (Rhypo — {r}) U R UES(r);
Rrocheck = (Rnacheck - {T}) U &g("')§
foreach 7' € £S(r) do begin
if Supg, (Rhypo — {r'}) = “yes” then
begin
Rhypo := Rhypo — {r'};
Ruocheck = Rnocheck — {7"};
end;
end;
end;
end;
end;
output Rpypo;
end.

Figure 3: Algorithm LEARN_KNOWN

Theorem 3 Any learning algorithm that ex-
actly identifies all finite sets of the term trees of
size n using restricted equivalence, membership
and subset queries must make (2") queries in
the worst case, where n > 6 and |A| > 1.

5 Conclusions

‘We have studied the learnability of OTF, in the
exact learning model. We have presented polyno-
mial time learning algorithms for OTF, by us-
ing superset and restricted equivalence queries.
Moreover we show the hardness of learning O7F
in the exact learning model.

Algorithm LEARN_OTF
Output: A set R € OTFy with Ly(R) = La(R.).
begin
m:=0; R:=0;
repeat
m:=m+1;
R := LEARN_.KNOWN (m);
until rEquiv g, (R) = “yes”;
output R;
end.

Figure 4: Algorithm LEARN_OTF

We will study the learnabilities of puOTF, and
OTFp in the framework of polynomial time in-
ductive inference from positive data.
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