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Abstract This study deals with the problem on how to simultaneously estimate the parameters in a stochas-
tic process, especially under some complicated circumstances. Some previous research suggest using x2-fitting to
estimate these parameters. But, it is certainly difficult to carry a x2-fitting with several unknown distributional
parameters. Here in this study, we suggest estimating these paramters simultaneously by using Genetic Algorithm
(GA). At first we explain Tsallis distribution and entropy model related to the Fokker-Planck equation, which is
usually used to describe time-space evolution of particles. Since Tsallis distribution can provide dynamical traces of
probability density functions (p.d.f) which evolve over different time spans. Different from conventional Brownian
motion, Tsallis distribution is evolving as an anomalous diffusion process, and it includes two types distributions,
namely, one is a distribution with finite moments, the other is a distribution with infinite moments. Actually there
are several parameters to be optimized simultaneously, it is not easy for some simple x2-fitting to estimate. Thus,
we propose to use the GA-based procedure to simultaneously optimize parameters of Tsallis anomalous diffusion
process. In our numerical studies, we find that our proposed method works well on tracing the whole evolving
picture of returns distribution of the High Frequency Data(HFD) in the stock market.
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1. Introduction

Recent worldwide financial crisis, begun with the
bankruptcy of the Lehman Brothers Holdings Inc., has
caused hefty losses in many financial markets. Many banks
have been or prepared to be injected with governmental cap-
ital, since the dysfunctional markets liquidity among the
banks, security companies, and insurance corporates etc.
One of the problems of this crisis is wheather financial insti-
tutions have evaluated the right risks related to their daily
businesses.

Mathematical models have been built for them to eval-

uate various financial risks. But, most of them are based

on normal assumption. The problems to trace continuous
evolution of probability density functions over different time
spans are crucial to detect systematic changes in markets.
This study deals with Genetic Algorithm (GA) based opti-
mization of Tsallis anomalous diffusion process and its appli-
cations to evolution analysis of returns distributions. So far,
well-defined models, such as Brownian motion or Geomet-
ric Brownian motion are utilized to analyze price changes in
markets due to their own simplicity. However, these assump-
tions are not accurate enough to detect characteristics of the
evolution of pdfs over different time spans, and remain se-
rious biases in some cases. As alternatives, modifications of

original p.d.fs are proposed by using mixture distributions,
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and quantitative analyses have shown that these alternatives
can represent the characteristics of returns distribution, such
as kurtosis and heavy-tailed behavior of p.d.fs[1]. However,
it is well observed that a returns distribution usually evolves
over different time spans, and then methods are needed to
figure out whole pictures of continuous evolution process of
p.d.fs over different time spans(2](3][4][5].

The problem to approximate the probability density func-
tion (called p.d.f) or distribution function is still basic and
crucial task in various fields such as engineering, economics
and finance as well as statistics. Especially, for the analysis
of probability corresponding to rare events we must focus on
the distribution tails, and sometimes we are puzzled by so-
called heavy-tailed or long-tailed distributions. Heavy tails
or long tails lead us to overestimation or underestimation of
rare events, so that serious accidents such as large packet
losses in network traffic and hefty damages to financial as-
sets occur. Thus, more accurate approaches to approximate
p.d.fs are necessitated. This study deals with Genetic Al-
gorithm (GA) based optimization of Tsallis anomalous dif-
fusion process and its applications to evolution analysis of
returns distributions.

In previous works for the approximation of p.d.f, we find
several successful results using the GA [1][6][7][8](9]. By us-
ing two typical distributions (Gamma and log-normal distri-
butions), the approximation of p.d.f for natural phenomena
such as water flow is shown. But, in these cases the com-
plexity of the mixture distribution is limited. As alterna-
tives, modifications of original p.d.fs are proposed by using
mixture distributions, and quantitative analyses have shown
that these alternatives can represent the characteristics of
returns distributions, such as kurtosis and heavy-tailed be-
havior of pdfs. For the prediction of error distribution or the
generation of random numbers, the combination of multiple
p.d.fs is used to generate variables by optimizing the weight
among p.d.fs. But, the application of the mixture distribu-
tion is oriented only for the error estimation and random
number generation and the basic p.d.f is limited. Moreover,
it is well observed that a returns distribution usually evolves
over different time spans, and thus methods are needed to
figure out the whole picture of continuous evolution process
of p.d.fs over different time spans.

As to grasp the whole picture of how a returns distribu-
tion evolves dynamically, we propose to model it as a Tsallis
distribution as shown in previous work [4]. But, the au-
thors haven’t shown that, how to optimize several param-
eters in Tsallis distribution simultaneously, instead, it just
states that the parameters are obtained from a simple x*-
fitting without shown readers any algorithm used in this fit-
ting. Usually, it is difficult to estimate several paramters by

only using x2-fitting. Thus, we propose to use Genetic Algo-
rithm (GA) to optimize these statistical parameters simulta-
neously, since GA has the ability to reach a global optimal
solution without stuck in local ones [5][6][7](8][9].

Firstly we explain Tsallis distribution and entropy model
related to the Fokker-Planck equation which is usually used
to describe time-space evoluation of particles[2][3]. It is as-
sumed that p.d.fs are usually time variant (time dependent),
and are described by time t as well as stochastic variable
z. The process (evolution) of the p.d.fs is described by the
Fokker-Planck equation. Different form conventional Brow-
nian motion, Tsallis distribution is related to an anomalous
diffusion process, and it includes two types distributions,
namely, one is a distribution with finite moments, the other
is a distribution with infinite moments.

Secondly we show how to use the GA-based procedure to
optimize parameters of Tsallis anomalous diffusion process.
Since Tsallis distribution can provide dynamical traces of
p.d.fs which evolve over different time spans. In our numer-
ical studies, we apply our proposed method to identifying
the evolution of real stock returns and find that our method
works well on tracing the whole evolving picture of returns
distributions.

The rest of this study is organized as follows. Section 2
summarizes the basic properties of Tsallis distribution and
Fokker-Planck equation, and shows how to optimize the pa-
rameters by using GA. Section 3 briefly reviews and sum-
marizes the evolution evidence of returns distributions over
varying time spans, and presents some applications and their

numerical results with real market data sets.
2. Tsallis anomalous diffusion process

2.1 Tsallis entropy and Fokker-Planck equation

It is assumed that p.d.fs are usually time variant, and are
described by time ¢ as well as stochastic variable z. The
evolution process of p.d.fs can be described by the Fokker-
Planck equation. Tsallis entropy is defined as follows.

So=—1-0 - [ Plaas ®

It is clear that S; will converge into a usual entropy when
q takes limit to 1, namely, S = — f PInP. Here, P(z,t)
is probability density function at time ¢, and parameter q
is independent of time ¢t. So as to insure the consistency of
a p.d.f, the following equations are imposed as constraints.
Equation (2) works as a constraint to make P(z,t) as a p.d.f
in common sense. Equation (3)(4) and (5)(6) are so called
g-mean, and g-variance. They are different from usual mean

and variance unless ¢ = 1.
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/P(z,t)dm =1 (2)
B -3 = [ (e - 2(0)Pla, ' @
=0 (4)
E(z —3(t)): = / (z — £(t))*P(z,t)%dz (5)
= o) ®)

By maximizing the Tsallis entropy constrained by above
equation (2)-(6) for some fixed g, it yields,
1 _ 1
P(z,t) = m(l +B(t)(g - (- 2(2)") ™7 (7)
Where Z(t) and B(t) are Lagrange multipliers correspond-
ing to equation (2) and (5)(6).

_BGiZi-3)

Z(t) = 8
® V(g —1)B() ®
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B@) = OO 9
_ I@)I'(y)
B(z,y) = T@+y) (10)
Since
o%(t) = E(z — 3(t))* (11)
then
0'2(t) — m’ < g (12)
0, q23

Where g should be less than % if it has a distribution with
finite variance, otherwise it has a distribution with infinite
variance. The value of g in practice is usually fitted by the
real market data sets.

For the nonlinear Fokker-Planck equation

OP(z,t)* _ D&%P(z,t)” (13)

ot 20z2
It can be solved by Equation (7) when ¢ = 14 p — v.

2 (F@)P(a,0)") +

Where F(x) is supposed to be a linear drift term, namely,
F(z) = a — bz. And here if

% = F(z) + /DP(z, 1) %(t) (19)

where £(t) is a Gaussian noise, namely,
<) >=8(t -t (15)

Where the diffusion coefficient term is DP(z,t)!™9, and it
is called as subdiffusion in the case ¢ < 1, and called as su-
perdiffusion in the case ¢ > 1. It is clearly different from
the normal Brownian motion, since the diffusion coefficient
term is only D in the normal Brownian motion. Therefore,
this model can be used as to fit nonlinear diffusion process.
The application details of the scheme are discussed in the

numerical experiments in Section 3.

2.2 GA-based parameter optimization of Tsallis

distribution

2.2.1 Why GA-based method is adopted

Let us simply explain why we propose to use GA-based
(Genetic Algorithm:GA) method here. As mentioned above,
previous work [4] suggests to use a x2-fitting to estimate the
statistical parameters in Tsallis distribution. But, the au-
thors haven’t shown that, how to optimize several parameters
in Tsallis distribution simultaneously, instead, it just states
that the parameters are obtained from a simple x-fitting
without shown readers any algorithm used in this fitting.
Usually, it is difficult to estimate several paramters by using
x?-fitting. Thus, we propose to use Genetic Algorithm (GA)
to optimize these statistical parameters simultaneously, since
GA has the ability to reach a global optimal solution without
stuck in local ones [8].

Namely, it is hard for one to estimate parameters g, and
B(t) or Z(t) simultaneously. It becomes more complicated
when there are several data sets available for several differ-
ent time spans. It is necessary to consider each fitting result
of each different time span. Therefore, it turns out to be a
multiobjective optimization problem. Usually it is not easy
to get optimal solution in dealing with such a multiobjective
optimization problem. Usual optimization methods proba-
bly converge into some local optimal solutions.

So far, GA, as one of the most efficient optimization meth-
ods, which converges rather into a global solution than a lo-
cal one in search of optimal solution, has been widely applied
in many research fields ranging from scientific researches to
social studies [8].

2.2.2 Our proposed GA scheme

Here, suppose that we have several data sets for differ-
ent time spans, then we can get several likelihood functions
for the data sets, say, Lo, L1,..Lm—1 which share the same
parameter g, with different parameters B(to), B(t1), ...,
B(tm-1). Let V = T Li, we consider that, the optimal
solution is a set of g, B(to), B(t1), ..., B(tm—1) which makes
V reach the maximum.

Our GA scheme is designed as follows.

Step 1: Initial population

Generate random numbers as individuals of the first gen-
eration with certain population. Here, each individual rep-
resents a set of parameters in P(x,t) (equation (7)), namely,
g, and B(t) or Z(t).

Step 2: Evaluation of fitness

Evaluate the fitness of each individual based on predeter-
mined fitness function, then to sort all individuals of the
generation according to their fitness values.

Step 3: Selection of individuals

Select two individuals with higher fitness values from the
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generation at a certain probability. The selection strategy
has a great deal of variations, Roulette strategy is adopted
in our applications.

Step 4: Genetic operations

Carry out genetic operations, namely, crossover operation,
and mutation operation to two selected individuals to re-
produce their offsprings and put them into the pool of next
generation.

Here, a crossover operation means to randomly decide
crossover positions on the two selected individuals at first,
then to exchange parts of two individuals each other. Ba-
sically, there are two methods to do this, one is one-point
crossover, the other is multipoints crossover. The later one
is applied to our application. A mutation operation means
to randomly decide mutation positions under a certain prob-
ability, and then to change those position values of a selected
individual. It also has two ways to do this. One is one-point
mutation, the other is multipoints mutation. The later one
is adopted in our application.

Step 5: Replacement of individuals

Reevaluate the fitness of each individual of the new gener-
ation, to see if the results meet the terminal conditions, such
as repeating times, or error range etc. If it does, then GA
terminates, else it goes back to Step 3.

And fitness function for evaluating jth individual is defined
as

X 1 V;

Fitness; = mz—jvj— (16)
where V; is a sum of likelihood values corresponding to L;s.

Overall, the differences between our GA-based method and
the previous work [4] are as follows.

1)Our GA-based method optimizes the parameters simul-
taneously. In previous work [4], it suggested a x’-fitting to
do it, which is not easy to be done under the circumstance
of several parameters unknown.

2)Our GA-based parameter-fitting is based upon multiple
evolving distributions over different time spans, not depend-
ing on only one of the evolving distributions as shown in [4].
Our method is to estimate the parameters of the evolving

family, it is a multiobjective optimization approach. ‘
3. Applications

3.1 Evolution of returns distribution

Prior to simulation studies for the evolution analysis of
time series of real stock returns, we briefly summarize the
significance to trace the changes of statistical properties of
returns. It is seen that returns obtained from stock prices
are evaluated over varying time spans, such as, one hour, one
day, one week, one month, one year, and so on. Usually their

statistics such as kurtosis, standard deviation tend to bear

different distributions over different time spans. Seemingly,
the evolving distribution is getting closer to normal distribu-
tion, as the time span is getting longer. However, in fact, it
can be shown that most of p.d.fs are not normals. Normality
will be rejected by statistical tests, such as Jarque-Bera test.

Here, we examine two different stock returns. One of
them consists of the daily returns of Standard & Poors In-
dex. The other comes from high frequency transaction data
of IBM stock. Here, return r; at time ¢ is computed by
r¢ = logp: — logpe—1.

Firstly, descriptive statistics kurtosis and standard devia-
tion of returns of S&P Index over different time spans are
summarized in Table-1.

Stock A | Kurtosis S.D.
1-day 35.15 | 0.00389
7-day 8.067 | 0.00984
14-day 5.844 | 0.01423
21-day 3.854 | 0.01772
28-day 3.214 | 0.02048
56-day 2.550 | 0.02896
112-day 0.839 | 0.04148
224-day 0.257 | 0.06028

Table-1: Evolution of kurtosis and standard deviation of daily
returns of S&P Index over different time spans

As is seen from Table-1, kurtosis and standard deviation
are getting nearer and nearer to normal as time span evolves
longer. But, it is seen that their statistical properties never
become to be identical to the normal distribution.

Secondly, kurtosis and standard deviation of returns of
IBM stock over different time spans are summarized in Table-

2. Figure-1 shows the plot of the time series of returns.

IBM Kurtosis S.D.
5-sec 5804.676 | 0.000284
10-sec 2452.795 | 0.000419
20-sec 461.969 | 0.000547
40-sec 294.132 | 0.000717
80-sec 195.777 | 0.000938
160-sec 156.321 | 0.001181
320-sec 85.974 | 0.00164
640-sec 60.107 | 0.00225
1280-sec 36.856 | 0.00317
2560-sec 59.566 | 0.00432

Table-2: Evolution of kurtosis and standard deviation of tick
returns of IBM stock over different time spans

It is also seen from Table-2, just as in the Table-1, kurtosis
and standard deviation of returns of IBM stock are getting
nearer and nearer to normal as time span evolves longer.
But, they never reveal as the statistical properties of usual

normal distribution.

- 126 -



o004

173

Figure-1: Plots of returns of IBM Stock

Figure-2: Plot of p.d.f of S&P day-1
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Figure-3: Plot of p.d.f of S&P day-14

3.2 Applications for evolution analysis

In this section, we apply our proposed method to real mar-
ket data set A (S & P Index) and B (IBM Stock Prices) ob-
tained from real stock prices. And all the returns of these
two stocks are standardized to have mean of 0 and standard
deviation of 1. The data set A is consisting of daily stock
prices. The procedure of this research is applied to estimat-
ing Tsallis distribution with 1-day, 14-day, 28-day returns.
Parameters of the GA are selected as follows.

Population size : 200
Crossover and mutation probabilities: 0.42 and 0.31 respec-
tively, g € (1, 5], and B(t) € [0.001, 50].

Furthermore, we employ elite-keeping policy in GA. An
elite-keeping policy is understood to copy an individual with
higher or highest fitness into next generation automatically.
‘We repeat GA procedure for sufficient times and get the same
global optimal solution. The estimated values of g and B(¢o)
are 2.23, and 1.68 respectively. It is seen that it is a superdif-

fusion process with infinite variance since ¢ = 2.23 > % >1
holds.
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Figure-4: Plot of p.d.f of S&P day-28

We show the results of the estimated distributions and the
empirical distributions from Figure-2 to 4. In all figures, the
outside dot-dash line denotes Standard Normal distribution,
the inner doted line denotes the estimated Tsallis distribu-
tion, and the circls denotes returns samples. It is seen from
these figures, the numerical results that the estimated P(z,t)
dynamically traces the evolution of returns distribution over
varying time spans.

On the other hand, both in academic research and busi-
ness practice, returns are often modeled as a process of
Brownian motion, or Geometric Brownian motion, such as,
rr = logpr — logpo ~ &((1 — %)T,0V'T), where ¢(m,s)
denotes a normal distribution with mean m and standard
deviation s. Compared to the Standard Normal distribution
in these figures, it is clear that Tsallis distribution catches
the evolution behavior of returns distribution much better
than the normal distribution does.

So as to show the capability of the proposed method, we
apply the same procedure to data set B, returns of high fre-
quency transaction data (High Frequency Data) of IBM. The
evolution is characterized by Tsallis anomalous diffusion pro-
cess shown from Figure-5 to 7, for the time spans (interval)
with 20 seconds, 80 seconds and 320 seconds, respectively.
By applying GA procedure to it, we get the estimated val-
ues of ¢ and B(to) are 1.01, and 0.04 respectively. It is seen
that it is a superdiffusion process with finite variance since
q=1.01< § holds.

Seen from Figure-5 to 7, the tallest outside dot-dash line
denotes Standard Normal distribution, the inner doted line
denotes the estimated Tsallis distribution, and the circls de-
notes returns samples, respectively. It is seen from these fig-
ures, the numerical results show that the estimated P(z,t)
almost exactly overlaps where the returns samples lies, and
dynamically traces the evolution of returns distribution over
varying time spans under the circumstances of tick data as
well as the daily data above. Meanwhile, compared the es-
timated Tsallis distribution to the Standard Normal distri-
bution in these figures, it is clear that Tsallis anomalous

diffusion process catches the evolution behavior of returns
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distribution much better than Brownian motion or Geomet-

ric Brownian motion does.
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Figure-7: Plot of pdf of IBM sec-320

4. Conclusion

In this research, we showed GA based optimization of Tsal-
lis anomalous diffusion process and its applications to evo-
lution analysis of returns distribution. We explained how to
model returns distribution using Tsallis distribution and en-
tropy model in relation to the Fokker-Planck equation, and
then we showed how to use the GA-based procedure to opti-
mize parameters of Tsallis anomalous diffusion process using
a multiobjective approach. In numerical studies, we found
that our proposed method works well on tracing the whole
evolving picture of returns distribution, even under the cir-
cumstance of High Frequency Data. It is important for us to
do the further researches to see how the Value at Risk (VaR)
or Conditional Value at Risk (CVaR) changes over the dif-

ferent time spans in risk management or risk measurement.
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