
－ 31 －

社団法人 情報処理学会　研究報告

IPSJ SIG Technical Report

社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

上位設計記述におけるダイナミックプログラムスライシングを用いた
ポストシリコンデバッグ支援手法
李　蓮福† 松本　剛史†† 藤田　昌宏††

† 東京大学大学院工学系研究科電機系工学専攻 〒 113–8656 東京都文京区本郷 7–3–1
†† 東京大学大規模集積システム設計教育研究センター 〒 113–0032 東京都文京区弥生 2–11–16
E-mail: lee@cad.t.u-tokyo.ac.jp, matsumoto@cad.t.u-tokyo.ac.jp, fujita@ee.t.u-tokyo.ac.jp

機能的バグに対するポストシリコンデバッグは必須の作業になりつつあるが、チップレベルでは内部状態
に対する controllabilityと observabilityが非常に低いなど、デバッグが大変である。本稿では、既存技術であるダイ
ナミックプログラムスライシングと高位レベル設計手法を活用したバグ特定手法を提案する。提案手法では、まずデ
バッグ対象チップにおいてエラーが観測されたピンに該当する上位レベル設計記述上の変数に対するスライスを求め
る。同時に、スライスに含まれる各 statementが実行されたタイミングも共に記録する。その後、複数のエラーパタ
ンから得られたスライスの共通集合を求めることにより、バグである可能性のある statementを求める。さらに、各
スライスに含まれる statementの前後関係のパタンを比較し、共通するパタンを取り出し、正しいトレースとの差を
求めることによって、バグである可能性を表す度合いに並べる。提案手法はその一部がツールとして実装されており、
例題による予備的な実験結果を示す。

ハードウェアデバッグ,ポストシリコンデバッグ

A Post-silicon Debug Support Using Dynamic Program Slicing

on High-level Design Description

Yeonbok LEE†, Takeshi MATSUMOTO††, and Masahiro FUJITA††

† Department of Electronics Engineering, School of Engineering, University of Tokyo,
Hongo 7–3–1, Bunkyo-ku, Tokyo, 113–8656

†† VLSI Design and Education Center, University of Tokyo,
Yayoi 2–11–16, Bunkyo-ku, Tokyo, 113–0032

E-mail: lee@cad.t.u-tokyo.ac.jp, matsumoto@cad.t.u-tokyo.ac.jp, fujita@ee.t.u-tokyo.ac.jp

Abstract Post-silicon debug of functional bugs is getting mandatory while it is a painful task due to the low con-

trollability/observability of internal states of hardware chips. In this paper, we propose a bug localization method

utilizing the existing concepts of dynamic program slicing and high-level design methodology. We derive slices for

the output variable of the high-level design description corresponding to the output pin of target chip where an

error trace is observed. At this time, we preserve the timing information on each statement of the slice as well.

Then, assuming that multiple error patterns for the same bug are given, we extract the intersection of the slices for

those error traces. Furthermore, we compare the execution patterns among the statements of each slice in terms of

timing, then rank by means of the matching frequency which is regarded as suspicious degree to be the bug. We

also developed a tool to achieve a part of our method and several experimental results are provided.

Key words HW debug, post-silicon debug

1. Introduction

First taped-out silicon chips fail due to various factors in-

cluding not only manufacturing defects but also functional

design bugs manifesting themselves as stopped response,

wrong output and dropping packets. In spite of the effort

— 1 —

2009－SLDM－139 (6)

2009－E M B－ 12 (6)

2009／3／5



－ 32 －

and progress on pre-silicon verification, it still cannot guar-

antee designs to be completely bug-free due to the limited

development time. Thus, corner-case design bugs can es-

cape to the chips. There is a study reporting that func-

tional design bugs are responsible for 40 % of first silicon

failures [1], which denotes that post-silicon debug is getting

mandatory. Hereafter, this paper refers bug as the functional

design bugs. Meanwhile, there is generally a great pressure of

time-to-market for products where any inappropriate debug

might cause extremely expensive results such as extra chip

revisions, product delays or even product recalls.

In general, a debug process consists of 4 steps [2]; error

detection, localization of the error, identification of the root

cause, and correcting the bug, where there is lack of stan-

dardized methodology or automatic tool support. However,

debugging post-silicon bugs by manual is generally a tedious

and hard problem because of the following reasons. First,

errors detected at post-silicon phase (i.e., errors that passed

the pre-silicon verification) tend to originate from corner-case

bugs and the error traces of them are typically very long

which makes it difficult to analyze the root causes. What

is worse, the observability and controllability of the inter-

nal states of chips are extremely low and strongly depend

on the additional architectures prepared for debug such as

scan chains or trace buffers. So far, several automatic meth-

ods for debug have been proposed. Some of these techniques

target specific types of design errors [3] or specific architec-

tures [4]. Others, which can deal with broader range, require

the availability of a golden model to localize the bug [5] [6].

On the other hand, a number of researches have been con-

ducted for debug automation for software system. Most of

them are aiming to provide useful hints for localizing bugs.

Among them, program slicing technique based approaches

which focuses the dependencies inside the program [9] [10],

and approaches focusing on the differences between the cor-

rect trace and error trace [11] have been the most popular.

On the basis of above situation, this work aims to alleviate

the engineer’s pain of chip debug with automatic bug local-

ization. Our approach is largely motivated by the existing

concepts; the high-level design methodology and dynamic

program slicing [9].

High-level design methodology is to start the hardware de-

sign from higher abstraction levels (i.e., system level, be-

havior level) than traditional register transfer level (RTL).

By working on the high abstraction levels, we can take ad-

vantage of comprehensibility of the design. Languages exist

to describe the high-level design including not only Ansi-

C but also C-like languages extended for hardware features

such as SpecC [7] and SystemC [8] , and commercial tools for

automatic synthesis of the design of those levels are avail-

able [13] [14]. Meanwhile, dynamic program slicing is a tech-

nique to extract a subset of program source code which con-

sists of the portions that actually affect the value of the target

variable at a certain point for a particular execution. The

more detailed explanation of dynamic slicing is given in Sec-

tion 2.

The main strategy of our method is to impose dynamic

slicing onto the high abstraction level (i.e., behavior-level)

design description with several error patterns each of which

consists of a sequence of input/output events leading the chip

to fail. With extracting the slices we collect the information

of the executed timing of each slice element. After preserv-

ing the slicing results for all error patterns, we extract the

intersection of those slicing results for the final result of the

bug candidates.

The main contributions of this work are listed as follows.

• Proposed a method to localize the bug automatically

• Enhanced the efficiency of bug analysis by improved

comprehensibility of design by adopting the high level de-

scription

The remainder of this report is organized as follows. Sec-

tion 2. presents the basic knowledge of the dynamic slicing

and its application to hardware design. Section 3. presents

the detail of our proposed method for bug localization.

Section 4. provides the experimental results applying our

method follwed by the discussion of Section 5. Finally we

summarize our work and present future works in Section 6.

2. Dynamic Program Slicing

Given a program, an input pattern and a target output

variable, dynamic slicing identifies a subset of the executed

program statements that influenced the target variable at

an execution point. Its application range is very wide; from

program debugging to complexity measurement. By the def-

inition of influencing, several kinds of slicing exist as follows.

• Data slicing: Only data dependencies are traversed.

• Full slicing: In addition to data dependency, control

dependencies are also traversed.

• Relevant slicing: In addition to full slicing, consider

the data dependencies among the variables used in the

path-condition predicates, and the data/control dependen-

cies among those newly discovered portions.

When we apply the dynamic slicing, we have to decide

which notion to employ considering the trade-off between

the coverage to contain the actually influencing portions, the

computational effort, and the number of the results as bug

candidates. The relevant slicing provides the highest cover-

age to detect the bug but it contains too many redundant

portions which are not actually related to the bug. A recent

study [12] shows the results which demonstrates the fact that

— 2 —



－ 33 －

full slicing is enough to reveal the bug using actual program

examples containing bugs. Thus, we decide to adopt the

notion of full slicing in this work.

We found several approaches to apply program slicing tech-

nique to hardware design. To deal with the event-driven

characteristic of RTL language, Ichinose et al. introduced

a new dependency, i.e., signal dependency [15]. Clarke et

al. proposed a method to apply traditional program slicing

as is on VHDL design description by converting the VHDL

constructs onto the constructs for traditional procedural lan-

guages [16]. On the other hand, Tanabe et al. proposed an

application of dynamic slicing onto the high-level hardware

design language, i.e., SpecC [17].

3. Proposed Bug Localization Method

In this section, we present the detailed explanation of our

proposed method to localize the suspicious portions to be

the bugs utilizing dynamic program slicing.

3. 1 Terminologies

Before going into the details of the proposed method, we

define the terminologies used throughout this paper.

• An error: A functionally undesirable result such as

stopped response, wrong output and dropping packets.

• A bug: A combination of the portions of a design which

ultimately causes an error.

• A pattern: A pair of input/output sequences ab-

stracted for high-level design. An error pattern stands for

a pair of input sequence which lead the chip execution to fail

and the resulting output sequence.

• A trace: A set of state instances with time stamp on

an execution path. An error trace is a set of state instances

with timestamp on an execution path of an error pattern.

• timestamp: A timing information when a statement

was executed in terms of cycle.

3. 2 A Bug Localization Flow

Figure 1 shows our bug localization flow which takes the

following items as inputs.

• A high-level design description of the target design.

– i.e.,A synthesizable behavior-level design described in

SpecC [7]

• Multiple error patterns for the same bug

• A correct pattern the trace of which is similar to the

intersection of multiple error slices.

For simplification of the problem, we also made several

assumptions as follows.

• Only one bug is affecting the error at a time (a realis-

tic and rationale assumption because a functional test vector

is generally targeting single specific functionality [18]).

• Multiple error patterns are observed for the same error

(i.e., same bug).

• The behavior level design description corresponds to

Figure 1 Our Bug Localization Flow

the chip

• It is possible to take correspondence between the I/O

ports of the chip and variables on the behavior-level descrip-

tion.

• Target error originates from the behavior level design

itself.

• The behavior of the target design is deterministic.

As shown in Figure 1, our bug localization method is

mainly composed of two stages, bug localization and can-

didate ranking. Bug localization stage ultimately lists all

the suspicious portions, while candidate ranking stage pro-

vides more efficiency by ranking the candidates by suspicious

degree to be bug.

The detailed explanation of each step shown in Figure 1 is

followed.

（ 1） Bug Localization Stage

• Extract dynamic slices in terms of statement

for every error pattern with preserving timestamps

Given the inputs, we apply the dynamic program slicing on

the behavior-level design description for the first step. While

we evaluate the source code to compute the dynamic slices,

we also collect timestamps for statements each of which rep-

resents the cycle when the statement is executed for further

alanysis. The pseudo code of the proposed algorithm is pre-

sented in the Algorithm 1. In order to choose the dynamic

execution path, we need to simulate the source code with

concrete value assignment, i.e., execute each program state-

ment. It is achieved by two procedures, Execute and Eval.

As described in the Algorithm 1, Execute is performed for

a statement existing in the source code in depth-first order.

— 3 —



－ 34 －

An execution of a statement consists of evaluation of ex-

pressions involved in the statement and propagation of the

concrete values assigned to the variables and decision of the

next execution path. Updating and propagating slices for

the variable are done during the Eval procedure. When the

currently evaluating variable is a used variable to be referred

by other variable in the same statement, the slice assigned

to the variable until that point is preserved. If the currently

evaluating variable is defined newly in the statement, the

slice for the variable is updated with the current statement,

current timing, and the preserved slices of used variables.

Also, the slice which represent the control dependencies if

there is any control dependencies to get to the current point

is added. The timing information of the control slices are

the latest executed time of them. After finishing the en-

tire operation for an input pattern, we get a set of tuples

of < patternIDX, nodeID, Texc > where patternIDX is a

number to distinguish the pattern, the nodeID is a num-

ber to identify a statement, and Texc is a timestamp for the

statement of nodeID.

• Extract the intersection of the slices

Once the slices for all the input sequences of multiple error

traces are obtained, the next step is to extract intersection of

the slicing results obtained from the multiple error patterns.

As for doing this, taking intersection is done by considering

the commonly involved statements without considering tim-

ing information. We postulate that the bug resides in this

intersection in this work and regard the intersection as the

set of bug candidates. Thus, we convince that we can find

the bug by just examining the statements of the candidate

set. Our method is further useful to analyze the root cause

than only computing the slice which is mere a set of portion

of program, since we preserve the timing information (i.e.,

timestamp) for each statement. By exploring the behavior

which causes the error the possibility to find the condition

which the bug statement manifests itself (i.e., becomes erro-

neous value).

（ 2） Candidate Ranking Stage

For further improvement of debug efficiency, we are consid-

ering the following ideas in addition to the bug localization.

• Caculate the timing distance Δ b/w statements

in an execution order

First of all, only for those nodes which are in-

cluded in the intersection, we order the tuples of <

patternIDX, nodeID, Texc > by Texc, i.e., executed timing,

for each error pattern. Then, we calculate the Δij = (Texc of

nodeID(j)) − (Texc of nodeID(i)) between the statements.

Using those data, we extract patterns which appear com-

monly in the error traces, which we call “common error pat-

tern” (Figure 2(a)).

• Compare the common error pattern / correct

trace

Now, we utilize the common intuition that a correct execu-

tion trace that is close to the error trace can provide a good

hint to find the root cause of the error, which is originally

presented in a theory of causality [20]. To explore the close

correct trace (Figure 2(b)) and computing the difference be-

tween the correct trace and the common error pattern we

can refer an existing research such as [11].

• Evaluate / rank the candidates

After getting all of the above disiderata, we rank the nodes

of the intersection obtained from the first stage of bug local-

ization by discent order of the score of difference (distance

in [11]) with the correct trace.

Algorithm 1 Dynamic Full Slicing with timing Info.

Procedure Execute (s, crr time, ctrl depth)

if s is a predicate representing a condition then

++ctrl depth;

push(stack.time[s], crr time);

end if

if s is a compound statement then

for each sub s do

Execute(sub s, curr time, ctrl depth)

end for

end if

for each expression e in s do

Eval(e, curr time, ctrldepth)

end for

end Procedure

Procedure Eval(e, crr time, ctrl depth)

for sube exists do

Eval(sub e, crr time, ctrl depth)

end for

rvalue slice = {slice�slice =< s id, {times} >};
ctrl slice = {slice�slice =< s id, {s id, {times} >};
if ctrl depth 0 then

ctrl slice = ctrl slice ∪ {parent ctrl stmnts with latest exe-

cuted time}
end if

if e is to be reffered then

rvalue dataslice = rvalue dataslice ∪ e i.dataslice ;

rvalue ctrlslice = rvaluectrlslice ∪ e i.ctrlslice ;

else if e iistobedefined then

e.dataslice = e.dataslice ∪ {< s, times.insert(currtime) >

} ∪ rvaluedataslice ;

e.ctrlslice = e.ctrlslice ∪ rvaluectrlslice ;

end if

end Procedure

4. Experiments

To achieve the proposed bug localization method, we im-

— 4 —



－ 35 －

Figure 2 Comparation of Patterns

plemented the dynamic program slicing tool in C++. The

tool can accept the behavior-level design source code written

in SpecC. The tool is still under development to be able to

handle more syntaxes and current scale of the entire source

code is 17913 lines and. Addition of timestamp is not imple-

mented in the tool.

To examine whether our method can detect the bug suc-

cesfully or not, we prepared several design examples written

in SpecC language. A brief illustration of the example de-

signs are as follows and each of which are containing a bug

statement intentionally injected.

• FACT : Calculates a factorial of given natural number

• IDCT1 (Inverse Discrete Cosine Transform) : Calcu-

lates 8 rows in 1 iteration

• IDCT2 : Calculates 8 rows and 8 columns in 1 itera-

tion

• ELEV : An elevator controller designed for 3-story

building

The experimental results applying above examples to the

first stage of our method which extracts the intersection of

the multiple slices from the error patterns utilizing the dy-

namic slicing tool, are shown in the Table 1.

As shown in the experimental results presented in the Ta-

ble 1, firstly we can see that the output result of applying our

method could detect the intended bug succesfully in all cases.

However, as for the 3 examples, FACT, IDCT1, IDCT2, we

could not reduce the numbers of the bug candidates enough

to distinguish the bug efficiently.

The main reason is because those programs are not es-

sentially appropriate to take advantage of dynamic slicing.

The advantage of dynamic program slicing is that we can

focus on only for a particular execution path which is mostly

related to the error using the concrete variable assignments.

However, those 3 examples do not contain many variations of

execution paths and most of the statements have data depen-

dency among them. Thus, the more complicated examples

which have a number of seperated modules (i.e., procedures)

and execution paths are better to take the more advantage

of dynamic program slicing. Meanwhile, the case of the 4th

example, which has many execution paths, we could take

considerable advantage of our method to reduce the number

of bug candidates out of the entire statements while it could

detect the intended bug as well.

5. Discussion

Still, there are a number of issues to be solved in order to

improve the debug efficiency.

Above all, while the program slicing technique is effective

to confine the program only to the related portions to target

error, it is nessesary to support the hardware specific fea-

tures different from the sequential programs. As mentioned

in the Section 2. there are efforts to deal with the hardware

features such as parallel behaviors. Thus this work extended

the application to hardware debug assuming that they are

already completed while actually they sloved the problem

using a kind of trick on dependency graph, which are still

not proved to be plausibility.

Also, there are many kinds of bugs which have various

characteristics, and dynamic slicing are effective on just the

syntactic bug which definitely resides only one bug, but not

so effective for the bugs which manifesting themselves only

when they combined with each other. On the other hand,

debug with “distance metric” is strong for the bug state-

ment which become erroneous value whenever it is executed,

but week for the bug which become errorneous only un-

der specific condition. For example, consider a statement

“x = y/(z%200);” which becomes error only when the value

of the z is multiples of 200. Thus it is desired to consider

and apply the appropriate combination of the bug localiza-

tion methods which can handle the various characteristics of

real bugs.

Meanwhile, in order to apply the high-level information to

the post-silicon chip debug, it is also required to take the

correspondency between the high-level design elements and

the components of the chip, as well as the behavior and data

flow between those levels, while this work is performed under

the assumption that the designer is able to take the corre-

spondencies by manual.

6. Summary and Future Works

In this paper, focusing to post-silicon debug of the func-

tional design bugs, we proposed a bug localization method

utilizing the two existing concepts, high-level design method-

— 5 —



－ 36 －

Table 1 Experimental Results

Design LOC # of # of # of elements for the # of elements of the the intersection

Stmnts branch slice of error variable intersection of includes

Error Error Error slices for each pattern buggy Stmnts?

trace 1 trace 2 trace 3

FACT 12 7 2 3 3 3 3 yes

IDCT1 44 39 0 19 19 19 19 yes

IDCT2 1084 923 8 616 616 616 616 yes

ELEV 324 239 122 7 7 7 7 yes

ology and dynamic program slicing technique. By imposing

the dynamic program slicing on the high-level design descrip-

tion we can take advantage of high comprehensibility about

the design which save the debug effort. Also, we proposed

further improvement to enhance the bug efficiency by ex-

tracting the intersection of the error slices and ranking by

the difference with the correct trace. To show the applicabil-

ity and effectivity of our proposed method, we are developing

a tool support to achieve the method. Some experimental re-

sults using the tool are introduced. There are still a number

of remaining issues for further improvement of post-silicon

debug.

For the future direction, we are planning to develope the

bug candidate ranking algorithm as well as to propose a

method that can handle more various kinds of bugs. For

the next step to try, we are considering to make the candi-

date ranking method presented in section 3. to be a concrete

algorithm examining existing pattern matching algorithms.

References

[1] P. Rashinkar, P. Paterson, and L. Singh, System-on-a-chip

Verification : Methodology and Techniques, Kluwer Aca-

demic Publishers, 2002.

[2] D. Josephson and B. Gottlieb, “Silicon Debug”, Advances

in Electronic Testing : Challenges and Methodologies, pp.

77-108, 2006 Springer. Printed in the Netherlands.

[3] S-Y. Kuo, “Locating logic design errors via test generation

and don’t-care propagation”, Proc. European Design Au-

tomation Conference 1992, pp. 466-471, 1992.

[4] S. Park and S. Mitra, “IFRA: Instruction Footprint Record-

ing and Analysis for Post- Silicon Bug Localization in

Processors”, Proc. Design Automation Conference 2008,

pp.373-378.

[5] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault

Diagnosis and Logic Debugging Using Boolean Satisfiabil-

ity”, IEEE Transactions on Computer-Aided Design of In-

tegrated Circuits and Systems, Vol. 24, No.10, October 2005.

[6] Y. Yang, A. Veneris, N. Nicolici, “An automated software

solution to silicon debug”, 5th IEEE International Work-

shop on Silicon Debug and Diagnosis 2008, pp.27-30, 2008.

[7] D. Gajski, J. Zhu, R. Doemer, A. Gerstlauer, and S.Zhao,

SpecC: Specification Language and Methodology, Kluwer

Academic Publisher, Mar. 2000.

[8] http://www.systemc.org/

[9] X. Zhang, H. He, N. Gupta, and R. Gupta, “Experimen-

tal Evaluation of Using Dynamic Slices for Fault Location”,

Proc. AADE-BUG 2005, pp.33-42, 2005.

[10] J. R. Lyle and M. Weiser, “Automatic program bug loca-

tion by program slicing”, In 2nd International Conference

on computers and Applications 1987, pp.877-882, 1987.

[11] A. Groce, S. Chaki, D. Kroening, and O. Strichman, “Error

explanation with distance metrics”, International Journal

on Software Tools for Technology Transfer, Vol.8, Issue 3,

pp.229-247, June 2006.

[12] X. Zhang, N. Gupta, and R. Gupta, “A study of effective-

ness of dynamic slicing in locating real faults”, Empirical

Software Engineering, Vol. 12, No. 2, April 2007, pp. 143-

160.

[13] Catapult C Synthesis: http://www.mentor.com

[14] PICO Express : http://www.synfora.com/

[15] S. Ichinose, M. Iwaihara, and H. Yasuura, “Program slicing

on VHDL descriptions and its evaluation”, IEICE Trans.

Fundamentals, Vol. E81-A, No.12, pp. 2585-2594, Decenber

1998.

[16] E. M. Clarke, M. Fujita, S. P. Rajan, T. Reps, S. Shankar,

and T. Teitelbaum, “Program Slicing of Hardware Descrip-

tion Languages”, in Proc. 10th IFIP WG 10.5 Advanced

Research Working Conference on Correct Hardware Design

and Verification Methods, pp.298-312, 1999.

[17] K. Tanabe, S. Sasaki, M. Fujita, “Program Slicing for Sys-

tem Level Designs in SpecC,” Proc. of IASTED Interna-

tional Conference on Advances in Computer Science and

Technology, pp.252-258, Nov. 2004.

[18] L. Huisman, “Diagnosing arbitrary defects in logic designs

using single location at a time (SLAT),” IEEE Trans. on

CAD, vol.23, no.1, pp.91-101, Jan.2004.

[19] K-H Chang, V. Bertacco, and I. L. Markov, “Simulation-

Based Bug Trace Minimization With BMC-Based Refine-

ment”, IEEE Transactions on Computer-Aided Design of

Integrated Circuits And Systems, Vol.26, No.1, January

2007.

[20] D. Lewis, “Causation”, Journal of Philosophy, 70, pp.556-

567, 1973.

— 6 —




