2009—BIO—16 (11)
2009736

FEEREN LB B
IPSJ SIG Technical Report

RHMDXFIREE., TNo EEGEL XFIMNGHRT S

WERR7ILT X L

% B &M 5l
BRAEAE A STRUERT PR BFIERT

T 2RMDIXFINOES . SETNLEER L ZXFHIOESGL L. SHD T 2H#AT 2REE
BET D, BEPFREND, BELREE L TERMELMELS Z LIS EEMOICREEL TR D, A5F
RTIE, S OIFFIEAELEL THBEBRSLFFIEHBL . ThLEEVOHERTHET I LI
&0 T 2R DHRERMT AT Y XLEREL ., AFEEL S OREITIPDLT. S OXF
FIROKFN LI T O(L) R CTREBRIRER Ry —F TN RFETH D, ATV Y XADER)
Ma, TUF MTERESNEZXFSIE € b cDNA BEFNC L TRAT 2 EHREBERTIML 72,

A linear time algorithm that infers hidden strings

from their concatenations

TOMOHIRO YASUDA
Central research laboratory, Hitachi, Ltd.

Let 7 be a set of hidden strings and S be a set of their concatenations. We address the
problem of inferring 7 from S. Any formalization of the problem as an optimization problem
would be computationally hard. Here, we propose a new algorithm that infers 7 by finding
common substrings in S and splitting them. This algorithm is scalable and can be completed
in O(L)-time regardless of the cardinality of S where L is the sum of the lengths of all strings
in §. We evaluated the effectiveness of our method by computational experiments against
randomly generated strings and human cDNA sequences.

1. Introduction

Let 7 be a set of hidden strings and S be a set
of their concatenations. We consider the problem of
inferring 7 from S when only § is given. The prob-
lem is motivated by the analysis of cDNA sequences.
A gene might have more than one cDNA sequence
by inserting or deleting alternative segments. This
phenomenon is prevalent in many organisms®. Usu-
ally, alternatively spliced sequences are detected by
aligning them with genomic sequences?). Nonetheless,
methods that require as input only cDNA sequences
would be useful because not all organisms have had
their genomic sequences determined.

To clarify the problem, we show a small example.

Examplel Suppose that we are given S =
{So, 51, S2}, where

So = ACGGTCTAGAATAGCAGGCTCGTCCTATGGCATTTT,

S1 = CATCTGGTAGCAGGCTCGTCCTATCCAAGTAAAGGAC,

S2 = CATCTGGTAAGTGGGCCGTCCTAT.

These are concatenations of strings in a set 7 =
{T3|0 < i < 8}, where

To = ACGGTCTAGAAT, T = AGCAGGCTC,

T> = GTCCTAT, T3 = GGCATTTT,
T4 = CATCTGGT, Ts = CCAAGT,
Ts = AAAGGAC, T7 = AAGTGGGCC.

In fact, So, S1 and S2 can be rewritten as:
So = TOT1T2T3, S1 = T4T1T2T5T5, Sy = TaT7T5.
We aim at inferring 7 from S. [m]
If we formalize the problem as an optimization
problem, it is difficult to give an efficient solution.
Let |S| and |7 | respectively be the cardinalities of S
and 7. Néraud® considered the problem of deter-
mining, for a given set S of strings and an integer
k, whether there exists a set 7 of strings such that
8 C 7" and |7| < k. Néraud proved that this prob-
lem is NP-complete even when k = |S| — 1; that is, it
is NP-complete to determine the existence of 7 that
is smaller than S. Even if only two strings are com-
pared, it is NP-hard to find the smallest common col-
lection of substrings that do not overlap each other
and that cover the whole of the given two strings?".
As to comparison of two strings, there are approxima-
tion algorithms, and also solutions for relaxed con-
ditions. However, any extension for more than two
strings would be computationally hard. Despite this
difficulty, a method scalable to |S]| is preferable for ap-
plications. For practical uses, a lot of MSA programs
have been available?. Unfortunately, their purpose
is not to decompose given strings into substrings of
which given strings are concatenations, but to obtain
alignments by finding similar regions.

Here, we propose a fast and scalable algorithm for
inferring 7 from S. Our approach is based not on
optimization but on finding common substrings and
splitting them.

2. Preliminaries

Let N be the cardinality of S, and L be the sum
of the lengths of all strings in S. We denote by ¥
a finite alphabet of which strings in S consist, by
* the set of possibly empty strings, and by 7 the
set of non-empty strings. For a string s € £*, the
length of s is denoted by |s|. When s = 515283 for
some s1,82,83 € X", they are respectively called a
prefiz, a substring, and a suffiz of s. Each of them
is proper if it is not identical to s. When s is a
substring of S; € S beginning at the j-th position
of Si, we say that s occurs at (¢,7) or that (¢,7) is
an occurrence of s. Let Occ(s) be the set of all oc-
currences of s € ©F. For an integer k, we define
Occ(s) + k = {(3,7 + k)|(3,7) € Occ(s)}. An empty
set is denoted by 0.

Let STree(S) be a generalized suffix tree® of all
strings in S. Each string in S is appended a distinct
termination symbol at its right end®. A path-label of
a node v in STree(S) is the concatenation of edge la-
bels from the root to v. We denote by p(v) the string
obtained by removing any termination symbol from
the path-label of v. Let L(z,7) be a leaf of STree(S)
that represents the j-th suffix of S; € S.

We capture common substrings in S as maximal
common substrings defined below.

Definitionl (MCS) A string m € =% is a maz-
imal common substring (MCS) for S and l, if m is a
substring of some S; € S and has the following prop-
erties:

(MD)m} > L.

(M2)Occ(m) # Occ(ms) for any s € =t
(M3)Occ(m)‘# Occ(sm) + |s| for any s € 7.

Let MCS(S,!) be the set of all MCS’s for S and I. O

MCS’s are a natural extension of maximal re-
peats®. MCS’s were also known to as core blocks® .

Definition2 RightMCS(S,l) is a set of non-
empty strings, each of which is a substring of some
S; € S and satisfies (M1) and (M2). [}

RightMCS(S,!) is a natural extension of strings
considered in the DNA contamination problem®.

3. Definition of DCS’s

In Fig. 1, m1(=CGTCCTAT) is an MCS shared by all
of So, S1, and S> of Example 1, while ma(=TAGCAGGCT
CGTCCTAT) is shared by only So and S1. This suggests
that there is a string in 7 shared by all of So, S1, and
S2, and on its left, there is another shared by only So
and S;. To infer both of them, we should split m2 at
a boundary of mi. We generalize this inference.

Definition3 (Boundary set) The boundary set
for S and l is the set defined by B(S,l) = BL(S,l) U
Br(S,1), where

BL(S,1) = UmeMCS(s,z) Occ(m),
Br(S,l) = UmeMcs(s,z)(Occ(m) +|m|). O

We infer strings in 7 as substrings of given strings
that do not cross over any boundaries of MCS’s.

Definitiond (DCS) A stringe € I is a disjoint
common substring (DCS) for S and 1, if e is a sub-
string of some S; € S and has the following properties:
(D1)fe] > L.

(D2)For any (¢,7) € Occ(e) and any integer k such
that 1 < k < le|, (¢,5 + k) & B(S,1).

(D3)B(S,1) N (Ocele) + le|) # 0.

(D4)B(S,1) N Occ(e) # 0.

Let DCS(S, 1) be the set of all DCS’s for S and I. O

4. Algorithm that identifies DCS’s

We introduce a class of strings that bridge
DCS(S,!) and STree(S).

Definition5 Let H(S,l) be a set of strings such
that any h € H(S,!) has the following properties:
(H1)h € RightMCS(S,1).

(H2)For any proper prefix s of h, s ¢ RightMCS(S,1).
(H3)B(S,1) N Occ(h) # 0. m]

Then, the following lemma holdV.

Lemma 1 For a non-empty substring e of some
S; € S, e € DCS(S,1) if and only if e satisfies (D1)—
(D3) and e is a prefix of some h € H(S,1). O

By Lemma 1, we can identify DCS(S,1) by the fol-
lowing algorithm.

Algorithm: GET-DCS(S,1)

Step 1: Construct STree(S).
Step 2: Identify RightMCS(S,!) and MCS(S,1).
Step 3: Identify B(S,1).
Step 4: Identify H(S,1).
Step 5: Identify DCS(S,1).

maximal common substring

m_ (MCS)
So no : ,

et
NEe
= = we

7
disjoint common substring(DCS)

Fig.1 MCS(S,!), B(S,l), and DCS(S,!) for Example 1.
Bidirectional arrows indicate MCS’s, while each cir-
cle at the j-th position of S; indicates that (i,j) €
B(S,1). DCS’s, indicated by hatched areas, do not
cross over any boundaries of MCS’s.

74‘7

Steps 1 and 2 can be completed in O(L)-time®.

Step 3: Identify B(S,1)

Clearly, B.(S,!) can be identified by a depth-first
traversal on STree(S). Let us focus on Br(S,l). Af-
ter initializing a set B to 0, a depth-first traversal on
STree(S) is conducted. For any L(%,j) encountered,
we add (4,7 + 1) to B if there is a node v such that
p(v) € RightMCS(S,!) and |p(v)| = | on the path
from the root to £(¢,7). When this process is com-
pleted, B = Bgr(S,1)*V.

Step 4: Identify H(S,1)

We identify H(S,!) by discarding any p(v) from
RightMCS(S,1) if p(v) does not satisfy any one of
(H2) or (H3), where v is a node in STree(S).

Step 5: Identify DCS(S,1)

To avoid exhaustive search, we use variables A(h)
for each h € H(S,!), and the following pointers.

Definition6 Pli,j] (0<i< N,0<j<|Si|) isa
pointer such that:

e Pl[i,j] — A(h) if (¢,5) € Occ(h) for h € H(S,1),

where P[i, j] — A(h) means P[i, j] points to A(h),

e Pli, 7] is a null pointer otherwise. O
‘We conduct the following procedures.

(1) Each P[z,j] is initialized to a null pointer.

(2) Conduct a depth-first traversal on STree(S).
For each L(i,j) encountered, P[i,j] is set so
that P[i, 5] — A(p(v)) if there is a node v such
that p(v) € H(S,!) on the path from the root
to L(4,7)-

(3) For each h € H(S,l), A(h) is initialized to |h/|.

(4) Apply the algorithm PREFIX-DCS(S,!) in
Fig. 2.

After these procedures are completed, the prefix of

each h € H(S,l) whose length is A(h) satisties (D2)

and (D3). Therefore, it is a DCS if A(h) > 1. All

Steps 1-5 can be completed in O(L)-time. Therefore,

Theorem 1 There is an algorithm that identifies
DCS(S,!) in O(L)-time, where L is the sum of the
lengths of all strings in S.

5. Computational experiments

We evaluated GET-DCS(S,) by computational ex-
periments. We say e € DCS(S,1) is consistent with
a string ¢ € 7 if and only if |Occ(e)| = |Oce(t)| and

Algorithm: PREFIX-DCS(S, 1)
for i :== 0 to N — 1 begin
zi=1,j:=18—1
repeat
if P[i,j] — A(h) then A(h) := min{z, A(h)}
zi=xz+1
if (3,5) € B(S,l) thenz :=1
ji=j—1
until j <0
end

Fig.2 The algorithm PREFIX-DCS(S,).

Table 1 Consistency of DCS’s against 73.
precision
0.9922

nok recall
96,198 0.9895

Table 2 Consistency of DCS’s against 73.

nok recall precision
(A) | 21,803 0.7308 0.4208
(B) | 23,798 0.7977 0.6278

the overlap of e and t occupies at least 90% of both
e and t wherever e or t occurs. Let nox be the
number of strings in DCS(S,[) consistent with some
t € 7. Below recall means nox /|7 |, while precision
means nox /|DCS(S,1)|. We used a Linux server with
Opteron(tm) 252 processors.

5.1 Randomly generated strings

Let 77 be a set of 97,217 random strings consisting
of A, T, G, and C, whose lengths were 50-240 bases and
145 bases on average. We applied GET-DCS(S,!) to
40,000 strings, each of which was a concatenation of
nine strings of 7;. The lengths of the 40,000 strings
were 5.218 x 107 bases in total. We set I to 30. As
shown in Table 1, the result was quite accurate.

To demonstrate the scalability of our implementa-
tion of GET-DCS(S,), we measured the increase in
computation time while the number of given strings
was increased. As shown in Fig. 3, the computation
time increased only linearly.

5.2 Transcriptome of Homo sapiens

Next, we tested our method against all cDNA se-
quences of Homo sapiens in the RefSeq database!®
of release 28. Although sequence differences were
reconciled to finished genomic sequences in this
database'®, they still contain plenty of complex fea-
tures of real cDNA sequences. We removed consecu-
tive A’s at the end of each sequence to exclude poly(A)
tails. There were 25,199 sequences, whose lengths
were 3,050 bases on average and 7.686 x 107 bases
in total. We set [to 30. It took 826 seconds for GET-

Number of given strings (N)
T T T T 50000

! 4
Time for identifying DCS(S,}) ——
450 I Time for constructing STree(S) -
400 Number of given strings(N) =

; o] 40000
* S
300 : / 2 ; - 30000

250 fo . ; | .
200 sot ok 4 20000
150 o bt ST 4

o e
100 |- /.-.'. '.._.‘.,,‘..-rrf"7v ; - - 10000
50 b et - : i .
[1,
0 10 20 30 40 50 60
Sum of the lengths of given strings (L) [1,000,000 bases]

Computation time [sec]
500

Fig.3 Increase in computation time to identify DCS(S, 1)
while the number of given strings was increased.

Table 3 Results of our method and POA against the CREM
gene. The exons 8, 11 and 14 had alternative ends,
which were treated as independent exons. For ex-
ample, exon 8 was divided into 8’ and 8”.

length overlap with overlap with
exon | of exons DCS’s POA substrings
1 321 320(0) 321(0)
2 108 108(0) 108(0)
3 98 97(0) 98(0)
4 124 122(0) 122(0)
5 265 263(0) 263(0)
6 110 109(0) 109(0)
7-8' 98+143 241(1) 241(1)
8" 571 570(0) 570(0)
9 189 187(0) 188(0)
10 88 86(0) 87(0)
11’ 198 196(0) 198(0)
11” 43 40(0) 42(0)
12 36 33(0) 35(0)
13 157 154(0) 157(10)
14 402 389(0) 392(10)
14" 1302 1292(0) 1292(0)

DCS(S,1) to identify DCS(S,!) from S. For 23,777
sequences out of the 25,199 sequences, positions of
exons and alternative ends of exons were available*’.
Let 72 be a set of strings obtained by splitting the
23,777 sequences at alternatively spliced positions. As
shown in row (A) of Table 2, the result was not satis-
factory. Major causes of problems are sequence vari-
ations such as SNPs, repeated elements, and family
genes sharing long identical regions irrelevant to alter-
native splicing. To partly circumvent these problems,
we merged DCS’s that always occurred adjacent in the
same order. We also removed DCS’s that occurred at
least twice in a sequence. Then, we obtained an im-
proved result shown in row (B) of Table 2.

5.3 Comparison with an MSA program

POA

We compared the accuracy of our method with that
of an MSA program POA®. Although we tried sev-
eral MSA programs, all except POA suffered from
weak similarities between different exons. As a test
data set, we picked up 21 cDNA sequences of the
cAMP-responsive element modulator (CREM) gene
from the data set of the previous experiment. Their
lengths were 41,535 bases in total. We set the mis-
match parameter of POA to a huge negative value
(—10%). For GET-DCS(S,1), we set [to 20.

As shown in Table 3, results of our method and
that of POA were quite consistent with exons of the
gene, although exons 7 and 8 were fused since they
always occurred together. Both methods wrongly
dropped 10 bases at 5-end of exons 14’ and 14" due
to their identical 10-base prefixes. It took only 0.035
seconds for our method to obtain the result, while it
took 97.797 seconds for POA.

*1 http://www.ncbi.nlm.nih.gov/mapview/

6. Conclusions

We proposed a linear time algorithm that infers a
set 7 of hidden strings from a set S of their concate-
nations, and evaluated its effectiveness. If there is
possibility that given strings are concatenations of an
unknown set of strings, it is worth trying our method
to identify such set of strings.

Acknowledgments The author thanks Prof. S.
Miyano and Assoc. Prof. S. Imoto of the Institute of
Medical Science, the University of Tokyo, for helpful
advices and discussions. This work was partly sup-
ported by the New Energy and Industrial Technology
Development Organization (NEDO), Japan.

References

1) Blackshields, G., Wallace, I., Larkin, M. and
Higgins, D.: Analysis and comparison of bench-
marks for multiple sequence alignment, In Silico
Biology, Vol.6, No.4, pp.321-339 (2006).

2) Goldstein, A., Kolman, P. and Zheng, J.: Mini-
mum common string partition problem: hardness
and approximations, Proc. 15th International
Symp. Algorithms and Computation (ISAAC),
pp-473-484 (2004).

3) Gusfield, D.: Algorithms on strings, trees, and
sequences, Cambridge University Press, New
York (1997).

4) Lander, E. et al.: Initial sequencing and anal-
ysis of the human genome, Nature, Vol.409, pp.
860-921 (2001).

5) Lee, C., Grasso, C. and Sharlow, M.: Multiple
sequence alignment using partial order graphs,
Bioinformatics, Vol.18, No.3, pp.452-464 (2002).

6) Leung, M., Blaisdell, B., Burge, C. and Karlin,
S.: An efficient algorithm for identifying matches
with errors in multiple long molecular sequences,
J. Molecular Biology, Vol.221, No.4, pp.1367—
1378 (1991).

7) Lopresti, D. and Tomkins, A.: Block edit mod-
els for approximate string matching, Theoretical
Computer Science, Vol. 181, No. 1, pp.159-179
(1997).

8) Maniatis, T. and Tasic, B.: Alternative pre-
mRNA splicing and proteome expansion in meta-
zoans, Nature, Vol.418, pp.236-243 (2002).

9) Néraud, J.: Elementariness of a finite set of
words is co-NP-complete, Theoretical Informat-
ics and Applications, Vol.24, No.5, pp.459-470
(1990).

10) Pruitt, K.D., Tatusova, T. and Maglott D.R.:
The Reference Sequence (RefSeq) Project, The
NCBI Handbook, NCBI, chapterl8 (2002).

11) Yasuda, T.: A linear time algorithm that infers
hidden strings from their concatenations, IPSJ
Trans. Bioinformatics, Vol.1, pp.13-22 (2008).

