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Abstract Probabilistic Boolean Networks (PBNs) have been proposed as one of mathematical models for
gene regulatory networks. In this work, we study attractors in PBNs. We study the expected number of
singleton attractors in a PBN and show that it is (2— (3)£~1)", where n is the number of nodes in a PBN and
L is the number of Boolean functions assigned to each node. Then, we present an algorithm for identifying
singleton and small attractors and perform both theoretical and computational analyses on their average
case time complexities. The results of computational experiments suggest that this algorithm is much more
efficient than the naive algorithm that examines all possible 2" states. We also show a simple and interesting
relation between the distribution of attractors in a BN and the steady-state distribution in a corresponding
variant of a PBN.

1 Introduction

To understand the mechanism of gene regulatory net-
works is an important topic in computational sys-
tems biology. Many mathematical models of ge-
netic networks have been proposed, which include
Bayesian networks, Boolean networks and probabilis-
tic Boolean networks, ordinary and partial differen-
tial equations, and qualitative differential equations.
Among them, a lot of studies have been done on the
Boolean network (BN in short). BN is a very simple
model which combines genetic networks with Boolean
algebra. In this model, each node (e.g., gene) takes ei-
ther 0 (not expressed) or 1 (expressed) and the states
of nodes change synchronously according to regula-
tion rules given as Boolean functions. Though many
aspects of Boolean networks have been studied, ex-

tensive studies have been done on the distribution of
length and number of attractors for randomly gener-
ated BNs with an average indegree, where an attrac-
tor corresponds to a steady-state of a cell. However,
exact results have not yet been obtained.

Although BN is a deterministic model, real genetic
networks contain some uncertainty. In order to cope
with this uncertainty, the probabilistic Boolean net-
work (PBN in short) was proposed as a stochastic ex-
tension of BN. Unfortunately, it takes at least O(2™)
computational time because the size of a vector rep-
resenting the probability distribution is 2", where n
is the number of nodes in a PBN. However, in many
cases, it might be enough to know approximate prob-
abilities of major states. Furthermore, it may be
helpful to know attractors in PBNs because singleton
or small attractors may correspond to major states



(a) Boolean Network  (b) State Transition Diagram

Figure 1: Example of Boolean network (a), and its
state transition diagram (b).
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in the steady-state probability distribution. Indeed,
Brun et al. studied relations between attractors and
steady-state probability distributions [1]. However,
they did not provide efficient algorithms for comput-
ing attractors in BNs or PBNs.

In this work, we study attractors in PBNs, where
attractors do not correspond to steady-states but cor-
respond to attractors in BNs [2]. First, we study the
expected number of singleton attractors in PBNs. In
particular, we show that this number is (2— (3)£-1)»
for a PBN, where L is the number of Boolean func-
tions which are assigned to each node. Next, we
present an algorithm for computing singleton and
small attractors by extending the techniques proposed
in [3]. We show that the average case time complexity
is 0o(2"™) in many cases, which suggests that compu-
tation of singleton attractors in PBNs is easier than
computation of steady-state distributions in PBNs.
We also perform computational experiments on ran-
domly generated networks in order to verify the the-
oretically derived time complexities. Then, we show
a simple relation between attractors and steady-state
probability distributions for a corresponding variant
of PBN.

2 BN, PBN and Attractors

A BN G(V, F) consists of a set V = {vy,...,v,} of
nodes and a list ' = (f1,..., fn) of Boolean func-
tions (see Fig. 1(a)). Then, the state of node v; at
time ¢t + 1, v;(¢t + 1), is determined by v;(t + 1) =
Fi(viy (), Vi yyo,y (B), where IN(v;) denotes the
set of input nodes to v;. |IN(v;)| is called the inde-
gree of v;. We use K to denote the mazimum indegree
of a BN. Here we let v(t) = [v1(t),...,vs(t)], which
is called a Gene Activity Profile (GAP) or a (global)
state of BN at time ¢. The dynamics of a BN can be
well-described by a state transition diagram shown in
Fig. 1(b). From this diagram, it can be seen that if
v(0) = [1,0,1], GAP changes as [1,0,1] = [0,0,1] =
[0,0,0] = [0,0,0] = --- and the same GAP [0,0,0] is
repeated after t = 1. These kinds of sets of repeating

states are called attractors, each of which corresponds
to a directed cycle in a state transition diagram. The
number of elements in an attractor is called the period
of the attractor. An attractor with period 1 (greater
than 1) is called a singleton (cyclic) attractor.

PBN is an extension of BN. The difference between
BN and PBN is only that in a PBN, for each vertex v;,
instead of having only one Boolean function, there are
a number of Boolean functions (predictor functions)
f]@ (j =1,...,1(4)) to be chosen for determining the
state of gene v;. The probability of choosing f]@ is c;Z)
(0< cy) <1land E;(;)l cgl) =1fori=1,...,n). The
dynamics of a PBN can be well described by the state
transition probabilities. Let u be a GAP of a PBN at
time ¢t. Then, we can calculate the probability that
the PBN takes a GAP w at time t+ 1 as Prob(v(t +
1) = w | v(t) = u). Since there are 2 GAPs, these
probabilities can be represented by a 2™ x 2" matrix
called the transition probability matrix. In a PBN,
we also call a set of GAPs {vy,...,v,} an attractor
of period p if Prob(v(t + 1) = viq1|v(t) = v;) # 0
holds for all 4 = 1,...,p, where we identify p+ 1 and
1. As in BN, we also call an attractor with period 1
a singleton attractor.

3 Expected Number of Single-
ton Attractors in PBN

In this section, we show how many singleton attrac-
tors there are in a PBN in average. Recall that u is
called a singleton attractor of a PBN if f;(u) = u
holds for some j (1 < j < N). The following theorem
shows that the expected number of singleton attrac-
tors in a PBN is quite large when compared to that
in a BN, which is known to be 1.

Theorem 1 Suppose that f; and |IN(v;)| are ran-
domly assigned for each v;. When l(i) = L holds for
any 1, the expected number of singleton attractors in

a PBN is {2 - (%)H}".

Proof. For each v;, the probability that f;z) (i(t)) #
a) holds for any j is (3)% where a € {0,1}. Therefore,
since Prob(v(t+1) = u | v(t) = u) is {1 — (3)L}",
the expected number of singleton attractors is 2™ x

-0 60 :
4 Algorithm for Computing At-
tractors in a PBN

In this section, we present an algorithm for finding all
attractors of a PBN by extending branch-and-bound
type algorithms proposed in [3].

We call type-1 problem a problem for finding at-
tractors with period z < p of a PBN. The overall



computational time for type-1 problem can be rep-
resented by time(x = 1) + --- + time(z = p), where
each term will be an exponential of n as shown below.
Therefore, when p is small, the overall average time
complexity will only be affected by the largest term
in the above formula. Thus, the order of the time
complexity for a problem of finding attractors with
period p, which we call type-2 problem, is theoreti-
cally the same as that of type-1 problem. Therefore,
we consider type-2 problem instead of type-1 problem
in the following. The pseudo code of the proposed al-
gorithm is given below:

Pseudo code
Input: a PBN
Output: all attractors with period p
Begin
define z-ancestor(v;): nodes initializing paths
to v; whose lengths are less than or equal to z.
initialize m = 1;
Procedure PBN Attractor(v, m)
if m = n + 1 then output v(¢) return;
for b=0to 1 do vy, (t) =b;
flag=0;i=1;
while flag=0and i <m
if every p-ancestor(v;) is assigned
r=0;
while flag=0and r <p-1
if it is found that
FP it +1) #vilt+7+1)
holds for each j
then flag = 1;
r=r+1;
i=1+4+1;
if flag = 1 then continue;
else PBN Attractor(v,m + 1);
return;
End

Now, we perform theoretical analysis of average
computational time of the above algorithm. We as-
sume that I(i) = L and ¢{) = ... = ‘31(8) hold for
any ¢. Assume that m of n nodes have already been
examined. Since |p — ancestor(v;)| is approximately

P 1IN (v;)|*, the probability that v;(t) # vi(t +p)
holds for some ¢ is approximately

(2. )
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Table 1: Theoretically estimated average case time
complexity for p =1, K € {2,3,4}, L € {2,3}.

L=2 L=3

K=2 | O(1.601") | O(1.763™)
K=3 | O(1.658") | O(1.790")
K=4 | O(1.698") | O(1.813")

Table 2: Empirical numbers of singleton attractors in
PBN for K € {2,3,4} and L € {2,3}.

L=2|L=3

K =2 1499 | 1.751"

K =3 | 1.500™ | 1.750™

K =4 1.500" | 1.749™
Ly%- K°

m
0.50( . The number of recursive calls
executed for the first m genes is, by setting s =
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We can confirm that some maximum values of this
formula are as shown in Table 1.

= {(2 - 0.5L 15X

5 Computational Experiments

We evaluated expected numbers of singleton attrac-
tors in PBN and time complexities of the proposed
algorithm. For each K € {2,3,4}, we randomly gen-
erated 100 PBNs with n € {5, 10, 15, 20, 25, 30} nodes
and L € {2,3} Boolean functions for each node, and
took the average values. All of these computational
experiments were done on a PC with Xeon X5460
3.16GHz CPUs under Linux (version 2.6).

Table 2 shows the empirical numbers of singleton
attractors in PBN for each L € {2,3}. We used a
tool for GNUPLOT to fit the function a™ to the ex-
perimental results. This tool uses the nonlinear least-
squares (NLLS) Marquardt-Levenberg algorithm. We
can see from the table that the empirical numbers
were almost the same as those obtained by theoreti-
cal analysis.

Table 3 shows the empirical time complexities of
the proposed algorithm estimated by 100 randomly
generated PBNs with up to 30 nodes for p = 1,
K € {2,3,4} and L € {2,3}. We fit the function
b x a™ to the experimental results in order to obtain
the empirical time complexities. The empirical time
complexities were slightly larger than those derived
from the theoretical analysis. However, it was still
faster than the naive algorithm which examines all
2" states.



Table 3: Empirical time complexities estimated using
100 randomly generated PBNs with up to 30 nodes
forp=1, K € {2,3,4} and L € {2,3}

L=2 L=3
K =2 | 0(1.694™) | O(1.855")
K =3 | O(1.758") | O(1.904")
K =4 | O(1.779") | 0(1.920")
6 Relation between Steady-

State Probabilities and At-
tractors

In this section, we discuss a simple relation between
the steady-state probability distribution in a variant
of PBN and the structure of attractors in a BN.

Let u,w be GAPs of a BN at time ¢t and ¢ + 1,
respectively. Since GAP at time ¢ + 1 is given deter-
ministically from GAP at time ¢ in BN, we can write

Prob(v(t+1) = wlv(t) =u) = 1.
For the other GAPs w’, we can write
Prob(v(t+ 1) = w'|v(t) =u) = 0.

The dynamics of the BN can be represented by a
2™ x 2™ matrix P. Here, we construct a variant of
PBN by introducing slight perturbation to this BN.
If w is the next GAP to w in the above BN, we let

1—(1—2%)5,

where € € (0,1]. For other w’, we let

Prob(v(t+1) = wlv(t) =u) =

€

o

We consider the case when ¢ is close to 0. Let P, be
the 2™ x 2™ matrix corresponding to these transition
probabilities. Then we have

Prob(v(t+1) = w'|v(t) =u) =

€
P.=(1-¢P+ 2711*,

where 1 = (11 --- 1)t of size 2" and H* denotes the
transposed matrix of H.

Let x be the corresponding steady-state probabil-
ity vector of size 2™ (i.e., €¢ = P.x.). Then, x. is
uniquely determined as the following lemma.

Lemma 1 The vector e = o5 (I — (1 —€¢)P)™'1 is
the steady-state probability distribution of the PBN,
where P is the transition matriz of the original BN,

and I is the identity matriz of size 2™.

Let A be the set of GAPs in an attractor with pe-
riod p in a BN (i.e., p = |A|). Let B be the basin of
the attractor A. That is, B is the set of GAPs that
eventually fall into the attractor A (i.e., A C B).

We use 7(B) to denote the sum of probabilities of
the GAPs that fall into the basin B. Then, we have
7(B) = ) ;cpl®el: and the following result.

Theorem 2 In the steady state, the probability that
the distribution state falls into the attractor basin set
Bisw(B) =2l

Then, as shown in [1], we have

B o
@i ~ ﬁ x (B) = IA‘I%’ ifie A,
0, ific B—A.

This result is interesting because it relates steady-
state probabilities with the sizes of attractors and
their basins.

7 Conclusion

In this work, we have studied attractors in PBNs.
We showed theoretical and experimental results on
the number of singleton attractors in PBNs. It is
suggested that different attractors correspond to dif-
ferent cell types. Since 1 is too small and 1.5" is too
large, these results suggest that many of genes may
have only one control rule (per gene) and several or
more genes may have multiple control rules. We pre-
sented an algorithm for finding singleton and small
attractors in PBNs and performed theoretical and em-
pirical analyses of their average case time complexi-
ties. Though the proposed algorithm is much faster
than the naive algorithm that examines all 2™ states,
these cannot yet handle very large PBNs. In partic-
ular, it is very difficult for the case of finding cyclic
attractors. Therefore, improvement of the algorithm
for finding attractors in PBNs, especially for finding
cyclic attractors, is important future work. In order
to relate attractors in BNs with steady-state proba-
bility distributions in PBNs, we derived a simple and
interesting relation. However, this relation holds only
for a special variant of PBN, which is considered as
a BN with very small noise. Since currently available
algorithms can not yet be applied to large networks,
development of faster algorithms for finding or ap-
proximating steady-state probability distributions is
also left as future work.
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