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Reflections on the incompleteness theorems

Eiichi Tanaka

As the first step to construct an arithmetic (or more generally, a formal system) without
its incompleteness, we try to understand the provability (decidability) of a formula. The
incompleteness thorems state that there is a formula which can not be proved and refuted
and the consistency of the system can not be proved in the system. This paper descrives
the following results; O the Godel number of the provability predicate to prove the in-
completeness theorems is infinite, @ the intent of Gédel numbering is not fully realized,
and @ any formal system is incomplete, if it has formulas with infinite length. Finally,
author’s view on Hilbert’s Consistency Program is stated.

1. Introduction

Godel studied Peano arithmetic and proved that there is a predicate which we can not
prove and not refute (the Ist incompleteness theorem), and the consistency of the arith-
metic can not be proved in the arithmetic (the 2nd incompleteness theorem). It is believed
that these results lead to the bankruptcy of Hilbert’s Consistency Program. Under the
influence of Godel’s paper Turing studied the halting problem of a computing machine
which he proposed. The incompleteness theorems gave a great impact on information
science.



The purpose of this research is understand the provability (decidability) of a formula.
As the first step to approach to this problem we try to find the mechanism of the incom-
pleteness. In this paper we show the followings. O The length of any predicate which
satisfies the diagonal theorem is infinite. Therefore, the length of the provability predicate
is infinite. @ The intent of Godel numbering is not fully realized. @ Any formal system
is incomplete, if it has formulas with infinite length. The author’s view on Hilbert’s Con-
sistency Program is stated.

2. Preliminaries

We omite the descriptions of the propositional calculus, the predicate calculus, Robin-
son’s (), and Godel numbering. The length of a formula is the number of the symbols in
it. Godel numbering satisfies the following characteristics.

(*1) Different finite sequences of expressions have different Gédel numbers.

(*2) There is an algorithm to decide whether a given number is the Godel number of
some finite sequence of expressions or not, and if it so, we can find the finite sequece
of expressions.

Cosider the following two functions (formulas).
Gi(z) = S(z) (1)
Ga(z) = fiz) - SQ) + fa(z) * S5(2) + ... (2)

where S is the successor function and fi(z) is a function such that if z = 1, fi(z) = 1,
and otherwise, fi(z) = 0. G1(z) and G,(z) are functions with the same value, but their
expressions are different. The Godel number of G;(z) is finite and that of G2(z) is infinite.
Godel numbering is only based on expresions.

Let z be a free variable for natural numbers. Enumerate all functions with only z as a
free variable in the ascending order of their Gédel numbers.

Fl(x)7F2($)»F3(m)a"' (3)
Consider the function which has the following values.
Fi(1), F5(2), F3(3),. .. (4)

This function must exist in (3). Assume that the function is the qth function in (3), that
is, Fy(z). The function can be expressed in the following way.

Fy(2) = fi(z) * Fu(1) + faz) - F2(2) + ... (5)



The function G(z) with infinite length has another expression Gy(z) with finite length.
However Fy(z) has not a finite length expression. If h # k, Fj, and Fy are the different
functions with different algorithms. Therefore, there are infinite different algorithms in
Fy(z). Then the length of Fy(z) is infinite, and the Godel number of Fy(z) is infinite. The
number of a formula whose length is infinite is infinite, and the Gédel number of each of
them is infinite. We can not reconstruct the original formula from its Godel number, if
its length is infinite.

(*3) A formula with finite length satisfies (*1) and (*2).

(*4) A formula with infinite length does not satisfy (*¥1) and (*2).

Lemma 1
Godel numbering is effective for formulas with finite length, but not for formulas with
infinite length.

3. The diagonal theorem and its characteristics

The diagonal theorem is used to derive the provability predicate, that is, 3y Provr(z,y)
, where T is the set of axioms of logic and these of ), z is the Godel number of formula
F to be proved, and y is the Godel number of a proof of F. In this chapter we will show
that the length of any formula in the diagonal theorem is infinite. First of all we will
describe the outline of the proof of the diagonal theorem after Maehara’ essay.
Enumerate all closed formulas in the ascending order of their Gédel numbers.

01)0276’33"' (6)

F.(z) is the nth formula in (3). F,(n) which is obtained to substitute a natural number
n for a free variable z, is a closed formula. Therefore, F,,(n) must be in (6). Assume that
it is C,,(,,).

Fo(n) = Com) (7

[The diagonal theorem]
For any formula F'(z) that has only one free variable z, there exists a natural number p
such that

F(p) & Cp 8)

The proof of this theorem is as follows. Consider F(o(z)), where z is only one free
variable in F'(¢(z)). This formula can be find in (3) and assume that it is the qth formula
in (3). That is

F(o(z)) = Fy() )



Substitute ¢ for z. Then we have

F(a(q)) = Fylq) (10)
From (7), we have

Fy(q) = Co(q) (11)
Then the following equation is obtained.

F(a(q)) = Co(g) (12)

Putting o(¢q) = p, we have the diagonal theorem.

Examine the proof. z in F(o(z)) indicates the number(position) of a formula in (3),
and o(z) is the number of a closed formula in (6). Since o(n) is determined by F,(n), the
information about F,(n) is required to compute F(o(n)). If m # n, F,,(z) and F,(z) are
different formulas. Then, those Gédel numbers are different. If we compute F(o(z)) for
z =1,2,3,..., we must compute infinite different closed logical fomulas. Therefore the
Godel number of F(o(z)) is infinite.

Lemma 2
The length of the formula that satisfies the diagonal theorem is infinite.

Then, ¢ in (9) is infinite. From (*4), F(o(x)) does not satisfy (*1) and (*2). Since the
length of F(p) of (8) is infinite, we have Lemma 2.

Corollary
The length of the provability predicate JyProvr(z,y) is infinite.

From Corollary and (*4), we have Lemma 3.

Lemma 3
We can not reconstruct the provability predicate from its Gédel number.

The concept of Gédel numbering is not effective in proving the incompleteness theorems.
Therefore, the incompleteness theorems are not correctly proved.
4. Infinitely long formulas

Let S be a formal system in which all the rules are finite. By a proof in S, we mean a
finite sequence of formulas, each of which either in an axiom or the conclusion of a rule



whose hypotheses precede that formula in the proof. If A is the last formula in the proof
P, P is a proof of A.

Evidently, any infinitely long formula can not be proved or refuted, because that a proof
must be done in finite steps. Then we have the followings.

SWe, St-e (13)
(13) means the 1st incompleteness theorem. Furthermore we have
SH(pA-p), S =(p A=) (14)

¢ A =@ means the inconsistency of S, and —(¢ A =) does the consistency of S.
We can prove neither the consistency nor the inconsistency of S. (14) means the 2nd
incompleteness theorem.

Theorem 4
Any theories are incomplete and their consistency can not be proved, if they have some
infinitely long formulas.

Note that theorem 4 holds for any formal theory. The provability predicate is an example
of infinitely long formulas.

5. Concluding Remarks

[1] Godel numbering does not work as Godel intended. We must omit the description of
it, if we explain the incompleteness of an arithmetic after Godel. It is enough to write
"Enumerate all functions with only one free variable z, that is, Fi(z), Fa(z), F3(2),.. ..
The provability predicate exists definitely in it.”

[2] It is believed that the incompleteness theorems destroy Hilbert’s Consistency Program.
Is it true ? Consider a destination which is infinitely far from here. Assume that we are
moving with finite speed. It is self-evident that we can not reach the destination within
finite hours. Someone says ”This shows one of the limits of human’s abilities”. Yes, it
is true. But, do you deeply impressed with his words. Do you find something important
in his words. Definitely, no! The incompleteness theorems are similar to this situation.
We have seen that any theories are incomplete and their consistency can not be proved,
if they have some infinitely long formulas. Godel’s provability predicate is nothing but
an example. Therefore, the incompleteness of a formal system is neither unusual nor
mysterious. The concept of ’infinity’ does not come from the real world, but it comes
from ideal thinking. If we exclude ’infinity’ from a formal system, this system could be
complete. But further reserches are required. The problem is how to construct a formal



system. The author believe that Hilbert’s Consistency Program is still alive.
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Appendix

We would like to describe the further findings of the research, though a part of them is
under consideration. Let ¢, ¢,..., ¢, be formulas. If the following three conditions are
satisficd, the set {¢1,...,¢a} arc called the covering formulas of ¢.

(a) Each ¢;(i = 1,...,n) is the subformula of ¢.

(b) For each pair ¢; and ¢;(i # j), @i(pi) is not a subformula of ¢;(¢;), respectively.
That is, ¢; and ¢; are independent.

(c) The rest of deleting 1, ..., @, are logical connectives and parentheses.
The followings are self-evident.

(1) If the length of ¢ is finite and each of the covering formulas of ¢ is proved or refuted,
@ is proved or refuted.

(2) If the length of ¢ is infinite, ¢ is neither proved nor refuted.

Assume that the length of ¢ is finite. Note that if at least one of the covering formulas
of ¢ is neither proved nor refuted, ¢ is neither proved nor refuted.

The basic symbols of the language of a formal system S is the set of variables, individual
constants, function symbols and predicate symbols which define a language of S. Let f and
P be a function and a predicate in the language, respectively. If Vzf(z) and/or 3z f(z)
are in the mathematical axioms, Vz f(z) and/or Jzf(z) are added to the basic symbols.
The same modification on the basic symbols is made concerning P.

Let ¢1,...,¢n be the covering formulas of ¢. Assume that ¢x(1 < k < n) is neither

proved nor refuted, and that the variables and individual constants in ¢} are the basic
symbols of the language. If ¢y is expressed by the basic symbols and finite length, ¢} can



be proved or refuted. Thefore, (3, includes ”defined functions” or ”defined predicates”
that are not in the basic symbols. If ¢ can be neither proved nor refuted, the length of
the expressin of ¢, by the basic symbols must be infinite. From the above observations

we have the following.

3) Assume that the length of ¢ is finite. If ¢ expressed by the basic symbols is infinite,
¢ can be neither proved nor refuted.

Assume that S has a model, and each formula in S is expressed in the basic symbols.
Let FL be the set of formulas with finite length, and ¢ be any formula in FL. Let Cons =
(e A—p)(= ¢ V —p). We have the followings.

Sk, or Sk-p (15)
Sk Cons (16)

To obtain a complete formal system we must exclude infinitely long formulas.



