BN LS SRS 2009—AL—123 (3)
IPSJ SIG Technical Report 2009735

EETS 1B AFAREERDIEET LTI XL
I BB GRALKSE) MO e (B EEAF)

AT, 2ES 7 7 2B 32BENRARMEIC OV TER L, ZORMEICHT 38RO T
NTY) ZLERET D, BRETET7TNATY XLOHBEBME T, BBEOTLIY AL VHESH
TEbDlZoTND. RETHT NI ALK VRO LN BZEAIL, BEOEONRT U RZET 5
72 2 SDOEEERTZT. T2 TX, 2ES 7 702 TORKIZETEINT VR, BLUOEKTESR
FIDOWFILIZEET B NRF U RAEBELTNDE. THET, ThHDONT U RAEME 2 RRHCH 2T T
NIY ZABIFEL R, ZOERFELERT 7200, AR CIRIB- e PAESIEZRET 5.
BEFEOTNLITY AT, BEEERHTHHICAA T —HKRL 1 ADOREHEE AV TV,
BRI IBAEFETIE, EVICIRREROREFEZFIHTS. ZOFLOWEAFESIEICLD,
HAEEHEEORIRSATREE 72 5.

A Fast Algorithm for Computing a Nearly Equitable Edge Coloring
on a Multigraph

Akiyoshi Shioura (Tohoku University) Mutsunori Yagiura (Nagoya University)

We discuss the nearly equitable edge coloring problem on a multigraph and propose an
efficient algorithm for solving the problem, which has a better time complexity than the previous
algorithms. The coloring computed by our algorithm satisfies additional balanced conditions on
the number of edges used in each color class, where conditions are imposed on the balance
among all edges in the multigraph as well as the balance among parallel edges between each
vertex pair. None of the previous algorithms are guaranteed to satisfy these balanced conditions
simultaneously. To achieve these improvements, we propose a new recoloring procedure, which
is based on a set of edge-disjoint alternating walks, while the existing algorithms are based on
an Eulerian circuit or a single alternating walk. This new recoloring procedure makes it possible
to reduce the time complexity of the algorithm.

1 Introduction

Problem Definition and Main Results We discuss the nearly equitable edge coloring
problem on a multigraph. Let G = (V, E) be a multigraph; a multigraph is an undirected
graph which may have parallel edges and/or loops. Throughout this paper, we denote by n
and m the numbers of vertices and edges in G, respectively. Let C = {1,2,...,k} be a set of k
colors. An edge coloring of a multigraph G is an assignment of k colors to edges in F, which is
represented by a function 7 : E — C.

Let m : E — C be an edge coloring. For each vertex v € V and a color i € C, we denote by
dn(v,%) the number of edges in E incident to v with color 7. We say that an edge coloring 7 of
a multigraph G is nearly equitable if it satisfies the condition

(NEC) ldr(v,4) — dr(v,5)| <2 (Vv € V,Vi,j €C).

The main aim of this paper is to propose a new algorithm for computing a nearly equitable edge
coloring of a given multigraph. The time complexity of the proposed algorithm is better than
the previous algorithms.

In addition to the condition (NEC), we consider the following two “balanced” conditions on
the number of edges used in each color class:

(B1) [|ELI—- B4l <1 (¥,j€C),
(B2) ||B;(u,v)| - |B4(u,0)[[<1 (Vi,j €C,Vu,0 € V),

Table 1: Comparison of algorithms for the nearly equitable edge coloring problem. The mark
“y/” means that the output of the algorithm satisfies the conditions (B1) and/or (B2).

authors time complexity (B1) (B2) technique used

Hilton & de Werra (1982) [2] O(km?) v/ single alternating walk
Nakano et al. (1995) [6] O(m?/k + mn) single alternating walk

Xie et al. (2004) [10] O(m?/k) Vv Eulerian circuit

Xie et al. (2008) [11] O(mnlog(m/(nk) +1)) +/ Eulerian circuit

Ours O(min{mn,m?/k}) v v/ edge-disjoint alternating walks

where 7 is an edge coloring and

Ei = {ecE|n(e)=i} (i€Q),
Ei(u,v) = {e€ E|n(e)=1, econnects uand v} (i €C, u,ve V).

The first condition (B1) imposes that the number of all edges in each color class is almost
the same, while the second condition (B2) imposes that each color class uses almost the same
number of parallel edges between each pair of vertices. We show that the nearly equitable edge
coloring computed by our algorithm satisfies both of the balanced conditions. Our main result
is summarized as follows:

Theorem 1. Our algorithm computes a nearly equitable edge coloring of a multigraph satisfying
the conditions (B1) and (B2) in O(min{mn,m?/k}) time.

Table 1 shows a summary of the previous algorithms for the nearly equitable edge color-
ing problem. The time complexity of our algorithm is better than the previous best bound
O(mnlog(m/(nk) + 1)) by Xie et al. [11]. Moreover, our algorithm is the first to compute a
nearly equitable edge coloring satisfying both of the conditions (B1) and (B2). The algorithms
in [10, 11] outputs a nearly equitable edge coloring satisfying (B1), and the output of the algo-
rithm in [2] satisfies (B2), but none of the previous algorithms is guaranteed to obtain a coloring
satisfying both of (B1) and (B2) (see Table 1).

To compute a nearly equitable edge coloring, our algorithm iteratively modifies an edge
coloring. For this, we propose a new recoloring procedure, which is based on a set of edge-
disjoint alternating walks, while the previous algorithms are based on an Eulerian circuit [10, 11]
or a single alternating walk [2, 6] (see Table 1). This recoloring procedure makes it possible to
reduce the time complexity of the algorithm while keeping the conditions (B1) and (B2) of an
edge coloring. In the following discussion, we assume k < m without loss of generality, since
otherwise the problem is trivial.

Previous and Related Work An edge coloring 7 of a multigraph G is said to be equitable
if it satisfies the condition |dr(v,%) — dr(v,5)] < 1 (Vi,j € C,Vv € V), which is stronger than
the condition (NEC). Although every bipartite multigraph has an equitable edge coloring, non-
bipartite multigraphs may not have an equitable edge coloring (see, e.g., [3, 9]). A typical
example is an odd cycle, which has no equitable edge coloring with k = 2. Several sufficient
conditions for graphs to have an equitable edge coloring are shown in [2, 3, 8]. Note that the
problem of determining the existence of an equitable edge coloring is NP-complete (see [11]).

The balanced conditions (B1) and (B2) have often been discussed in the literature of (nearly)
equitable edge coloring [1, 2, 3, 9, 10, 11]. The first condition (B1) is referred to as “equalized
condition” in [1] and “balanced condition” in [7, 10, 11], and the second condition (B2) is referred
to as “edge-balanced condition” in [2].

Overview of Our Algorithm Our algorithm starts with an initial edge coloring satisfying
(B1) and (B2), and repeatedly improves the edge coloring, without violating (B1) and (B2), so
that it satisfies the condition (NEC) in the end. As in many previous papers in the area of edge
coloring, our algorithm improves an edge coloring by switching edge colors of alternating walks
(see, e.g., [4]); the difference from the previous approach is that our algorithm uses a set of edge-
disjoint alternating walks, not a single alternating walk, in each iteration. If a set of edge-disjoint
alternating walks is chosen in a naive way, we can only show that the algorithm terminates in
O(m) iterations. To reduce the number of iterations, a set of edge-disjoint alternating walks is
chosen in a deliberate way, which leads to the bound O(min{kn,m}) on the number of iterations.
We show that each iteration can be done in O(m/k) time, and therefore the time complexity of
the proposed algorithm is O((m/k) x min{kn,m}) = O(min{mn, m?/k}).

2 Switch of Edge Colors

The proposed algorithm modifies an edge coloring by using an operation called switch. For
every distinct colors «, 3 € C, we denote by G,(a,3) the subgraph of G given by G,(a,) =
(V,E2U E?). Given an edge set S C E¢ U E2 . switching edge colors of S means to interchange
the colors a and 3 of edges in S; more formally, switching edge colors of S is to modify the
current edge coloring 7 : E — C to the new edge coloring 7’ : E — C given by

B (e€S, m(e) =a),
7'(e) = a (e€sS, m(e)=p),
m(e) (e €. E\S).

To switch edge colors, the algorithm uses an edge set S C ES U Ef satisfying the following
condition:

if dr(v,@) > dr(v,), then 0 < d5(v,a) — d3 (v, B) < dr(v,a) — dr (v, B), (1)
if dp(v,a) < dgp(v,p), then 0 > dﬁ(v,a) —d3(v, 8) > dr(v,a) — dr(v, B),

where for each v € V and i € {a, 3}, we denote by d=(v,4) the number of edges in S incident to
v with color 7. We say that S is eligible in the multigraph G («, 3) if it satisfies the condition
(1) for all v € V. Eligible edge sets are useful in getting a better edge coloring, as shown below.

Lemma 2. Let 7 : E — C be an edge coloring and S C EX U E,ﬂr an eligible edge set. Then, the
new edge coloring n’ : E — C obtained by switching edge colors of S satisfies

min{d,(v, @), d (v, 8)} < min{d (v, a),d (v, 5)}
< max{dy (v, a),dr (v,)} < max{d,(v,a),d(v,5)} (Vv e V).

To keep the balanced conditions (B1) and (B2), we consider the following two conditions for
an edge set S C EY U ES:

(S1) if |[E2| = |EZ| +1, then |SN E2| — |SN EZ| =0 or +1,
if |[E2| = |E£|, then |SN E2| — |SNEZ| =0,+1, or —1,
if |[E%| = |EP| — 1, then [SNE2| — |SNEZ| =0 or —1,
(S2) for every u,v €V,
if |[E%(u,v)| = |E7€(u, v)| + 1, then |S N E%(u,v)| — |S N EZ(u,v)| =0 or +1,
if |E%(u,v)| = | EZ(u,v)|, then |S N E%(u,v)| — |S N ES(u,v)] = 0,+1, or —1,
if |[E%(u,v)| = |E2(u,v)| — 1, then |S N E%(u,v)| — |S N E2(u,v)| =0 or —1.

Lemma 3. Let m: E — C be an edge coloring satisfying (B1) and (B2), and 7’ : E — C be the

new edge coloring obtained by switching edge colors of an edge set S C EZ U Ef satisfying (S1)
and (S2). Then, ©’ also satisfies (B1) and (B2).

The following is one of the key properties used in our algorithm, which is proven in Section 5.

Lemma 4. Let # : E — C be an edge coloring. Suppose that there exist two distinct colors
a,3 €C and a vertex u € V such that d(u,a) — d;(u,) > 3 holds. For any integer r € Z such
that 1 <71 < dg(u,a) — dr(u, 8) — 2, we can compute an eligible edge set S C EY UE? satisfying
the conditions (S1), (S2), and d5(u,) — dS(u, B) € {r,r + 1} in O(|EX U E2|) time.

3 Proposed Algorithm

We explain our algorithm for computing a nearly equitable edge coloring satisfying the conditions
(B1) and (B2). Our algorithm starts with an initial edge coloring satisfying (B1) and (B2), which
can be easily computed in O(m) time by using the following property.

Proposition 5. Let {e1,ea,...,em} be an ordered list of the edges in E such that the parallel
edges connecting the same pair of vertices are ordered consecutively, and color each edge e
(t = 1,2,...,m) by the color (¢ mod k) + 1. Then, the resulting edge coloring satisfies the
conditions (B1) and (B2).

The algorithm always keeps the two conditions (B1) and (B2) satisfied, and iteratively improves
the edge coloring so that the condition (NEC) is satisfied in the end.

To obtain an edge coloring 7 satisfying the condition (NEC), our algorithm processes each
vertex u € V one by one. If the vertex u violates the condition

|d7r(u7i) - dﬂ'(uﬂj)I <2 (V’L’J € C)’ (2)

then the algorithm repeatedly updates the edge coloring 7 by switching edge colors of an eligible
edge set S until the condition (2) is satisfied. By Lemma 2, once the vertex u satisfies the
condition (2), the edge coloring always satisfies (2) in the following iterations.

Suppose that the vertex u violates the condition (2). Our algorithm implicitly maintains the
following sets of colors:

Calw) = {ieC|[d(u)/k] —1 < dn(u,3) < |d(u)/k] +1}, 3)
Cw) = {i€Cldn(u,i) > |d(u)/k] +2}, 4)
Cr(u) = {i€Cldn(u,i) < [d(u)/k] -2} (®)

Note that {C2(u),C(u),C; (u)} is a partition of C. Whenever both of C;f(u) and C; (u) are
nonempty, the algorithm chooses two distinct colors «, 8 with o € C} () and 8 € C (u), which
is done by choosing o and 3 satisfying d,(u, @) = max;cc dr(u,) and d(u, 8) = min;ec dr(u,9).
Then, the algorithm updates the edge coloring 7 so that at least one of & and (3 is contained in
C%(u). This can be done efficiently by Lemma 4 with the value r given by

r = min{dx(u, @) — (|d(v)/k] + 1), ([d(uw)/k] = 1) = dx(u, B)}. (6)

Repeating these steps, we obtain either C(u) = @ or C;(u) = @ (or both). Suppose that
C; (u) = 0 holds. Note that in this case, the right-hand side of (6) is zero. Then, the algorithm
iteratively updates the edge coloring 7 so that the value Y {d.(u,i) — [d(u)/k] | i € CF(u)}
decreases at least by one while keeping the condition C; (u) = 0. This is done by choosing two

colors a and 8 with the same rule as above, and then using Lemma 4 with » = 1. In this way,
the algorithm computes an edge coloring 7 satisfying (2).
Our algorithm is described as follows.

Algorithm FASTBALANCING(G, C)
Input: a multigraph G = (V, E) and a set of colors C = {1,2,...,k}.
Output: a nearly equitable edge coloring 7 : E — C of G satisfying (B1) and (B2).
1. Compute an initial edge coloring 7 satisfying the conditions (B1) and (B2).
2. for each u €V do
3 Compute the value d(u,?) for all ¢ € C.
4. while 34, j € C such that |d;(u,?) — dr(u,j)| > 3 do
5 Compute colors a, § € C such that dr(u, @) = max;ec dr(u, 1), dr(u, 8) = min;ec dr(u, 7).
6 Compute an eligible edge set S C EX U E? satisfying (S1), (S2), and
dS(u,) — d5(u, B) € {r,r + 1}, where r is given by
r = max{1, min{ds(u, &) — (|d(u)/k] +1), (Jd()/k] — 1) — dx(u, B)}}.
Modify the edge coloring 7 by switching edge colors of S.
Output 7 and stop.

® N

We note that an eligible edge set .S in Line 6 can always be obtained by Lemma 4. It is easy
to see that the condition (NEC) is satisfied when the algorithm terminates. Since the edge set S
chosen in Line 6 satisfies the conditions (S1) and (S2), the edge coloring 7 always satisfies (B1)
and (B2) by Lemma 3. Hence, the output of the algorithm is a nearly equitable edge coloring
satisfying (B1) and (B2).

4 Analysis of Time Complexity

We analyze the time complexity of the algorithm FASTBALANCING. First of all, we analyze the
number of iterations of Lines 5-7 for a fixed vertex u € V, where we use a convex function
¢z : R — R defined by ¢,(z) = max{|z| — 2,0,z — [2]} (z € R), where z € R is a real number.

Proposition 6. Let z € R be any real number, and a,b,c € Z any integers such that a > z > b
and 1 <c<a—b-—1. Then, we have p,(a —c) + ¢,(b+c) < p,(a) + ¢,(b) — 1.

For an edge coloring 7 : E — C and a vertex u € V, we define

(I)(TB u) = Z‘pd(u)/k(dﬂ‘(uv Z))
ieC
The value ®(7,u) is a nonnegative integer for every edge coloring 7, and ®(7,u) = 0 holds if
and only if |d(u)/k] < dr(u,%) < [d(u)/k] for all ¢ € C. Thus, the value ®(m,u) represents the
degree of unbalance in the edge coloring 7 at the vertex u. Using Proposition 6, we can show
that the value ®(m,u) is monotonically decreasing in each .iteration of the algorithm.

Lemma 7. Let w be an edge coloring, u € V be a vertex, and o, 3 € C be distinct colors such
that d(u, o) = max;ec dr(u, 1), dr(u, 8) = min;ec dr(u,), and d(u, @) —dr(u,3) > 3. Suppose
that ' is an edge coloring obtained by switching edge colors of an eligible edge set S C ESU Eg
with

1< dS(u,a) — di(u, B) < dr(u,a) —dr(u,8) — 1. (7
Then, we have ®(n',u) < ®(m,u) — 1.

Lemma 7 implies that the number of iterations in the while loop in the algorithm FASTBAL-
ANCING is O(d(u)) for a fixed vertex u € V since ®(m,u) = O(d(u)). In fact, we can obtain the
following better bound.

Lemma 8. For a fized vertex u € V, the number of iterations in the while loop in the algorithm
FASTBALANCING is O(min{k, d(u)}).

Outline of Proof. In each iteration of the while loop, we consider the sets C2(u),C; (u),Cy (u)
defined by (3), (4), and (5), respectively. Suppose that the colors a and § chosen in Line 5
satisfy o € C}(u), B € C; (u). Recall that o and 3 are such that dr(u, @) = max;ec dr(u,i) and
dr(u, 8) = min;ec dr(u,). Let S be an edge set chosen in Line 6. Since the value r in Line 6
satisfies
r = min{ds(u, @) — ([d(w)/k] + 1), ([d(w)/K] — 1) ~ dn(u, B)} > 1,

at least one of a and 3 is contained in CO(u) after switching edge colors of S. This fact implies
that in at most k iterations, we have either C}(u) = 0 or C; (u) = 0. Assume, without loss of
generality, that C7(u) = 0. Then, we have ®(m,u) < 2k, and therefore Lemma 7 implies that
the while loop terminates in at most 2k iterations. This concludes the proof. O

By Lemma 8, the number of iterations of Lines 5-7 for a fixed vertex u € V is O(min{k, d(u)}).
We can compute an eligible edge set S satisfying the desired conditions in O(|ESUEZ|) = O(m/k)
time by Lemma 4. Switching edge colors in Line 7 requires O(|S|) = O(m/k) time. Maintenance
of values d.(u, %) and Line 5 can be done in O(m) time in total by using a data structure shown in
[11, Section 3]. Hence, the algorithm FASTBALANCING computes a nearly equitable edge color-
ing of a multigraph satisfying the conditions (B1) and (B2) in O((m/k) x }_ o,y min{k,d(u)}) =
O(min{mn, m?/k}) time. This concludes the proof of Theorem 1.

5 Computing Eligible Edge Sets

In this section we give a proof of Lemma 4, which states that an eligible edge set S C EZ U Ef
satisfying the conditions (S1), (S2), and an additional condition on the number d2 (v, a)—d= (v, 3)
can be found in O(|EX U EP |) time. To prove this, we consider a decomposition of the edge set
E2U E? by using eligible alternating walks to be defined below.

A walk is a sequence of vertices and edges of the form wugejuiesus ... es—1ui—1e:uy, where
Uo, U1, ..., Us are vertices and e, ey, ..., e; are distinct edges such that e; connects the vertices
uj—1 and u; for j = 1,2,...,t. It should be mentioned that a walk may visit the same vertex
more than once; in particular, it is possible that the first and last vertices ug and w; are the
same. A walk is said to be eligible if the set of all edges in the walk is eligible. In the following
discussion, we may regard a walk as the set of edges {e1,e2,...,e:} to simplify the description.

Let m : E — C be an edge coloring, and a, 8 € C distinct colors. We call a walk P in the
multigraph G, (o, 3) an alternating walk if any two consecutive edges in P have different colors.
Alternating walks in Gr(a,) can be categorized into the following three types. An a(-even
alternating walk is an alternating walk P such that |[PNEZ| = |PN E,'?| An a-odd alternating
walk (vesp., a B-odd alternating walk) is an alternating walk P such that |[PNE2| = |PNES|+1
(resp., |[PN EZ| = |PN E%| +1). In the following, we mainly consider eligible alternating walks
in Gr(a, B).

Lemma 9 ([4, 5, 6]). Let ug € V be a vertezx such that d(ug,a) # dr(uo,3). Then, there
erists an eligible alternating walk P = ugeiuieaus . .. e_1us—1€suy starting from ug.

A partition {P1, P,...,Ps,R} (s > 0) of the edge set E¢ U EP of the multigraph Gr(a, 8)
is called an alternating walk decomposition if P, (h = 1,2,...,s) are eligible alternating walks
satisfying the following condition:

D {d(v,0) —df*(v,0)} = dn(v,@) —dn(v,0) (VEV). (®)
h=1

72‘7

Note that an alternating walk decomposition is not uniquely determined. An alternating walk
decomposition always exists, and can be obtained by the following algorithm.

Step 0: Set s:=0 and E' := E*U E£.

Step 1: If dZ'(v,a) = dE' (v, 8) (Vv € V), then output {P1,Ps,...,Ps,E'} and stop.
Step 2: Let v € V be a vertex with dZ’ (v, a) # dZ' (v, B).

Step 3: Find an eligible alternating walk Py in the multigraph (V, E’) starting from v.
Step 4: Set E' := E'\ Ps11 and s := s+ 1. Go to Step 1.

It is not difficult to implement this algorithm so that it runs in O(|EX U EZ|) time.

We now prove Lemma 4. Suppose that there exist two distinct colors a,8 € C and a
vertex v € V such that dr(u,a) — dr(u,) > 3. Let {Pi,P,...,Ps, R} be an alternating
walk decomposition of E U E?. In the following, we show that there exists a subset P C
{Py1, Py, ..., P} of alternating walks such that the set S = (Jp.p P satisfies the conditions (S1),
(S2), and

d7 (u, @) — d3 (u, B) € {r,r +1}, 9)

where r is an integer with 1 < r < d;(u,a) — dr(u,8) — 2. We note that for any P C
{P1,Py,..., P}, the set S = Jpep P is eligible since {Py, P,,..., Ps, R} is an alternating walk
decomposition. The proof given below is constructive, and it immediately yields an algorithm
for computing an eligible edge set satisfying the desired conditions in O(|E2 U EP |) time.

We first consider the condition (9). We assume that Py,..., Py (s’ > 0) are the alternating
walks such that both of the end vertices are u, and Pg1,..., P (8" > §') are the alternating
walks such that only one of the end vertices is u. We start with P = (), and add the walks
P1, Py, ..., Pyings,[r/2]} to the set P. If s’ > [r/2], then the edge set S = |Jpp P satisfies

d7(u,a) — dj(u, f) = 2[r/2] € {r,r + 1};

i.e., (9) holds. Otherwise (i.e., s’ < [r/2]), we further add the walks Py 1, Py19, ..., Py (r—2s)
to P. Then, S = [Jpp P satisfies (9). We note that s’ + (r — 2s’) < s” holds since

25 + (5" — &) = dx(u, @) — dn(u, B) > 1.

We then consider the property (S1). We note that none of walks in the current set P is a
[-odd alternating walk since every eligible alternating walk starting from the vertex u is either
an of-even alternating walk or an a-odd alternating walk. Let t, be the number of o-odd
alternating walks in P, and define t3 by

o | max{0,ta -1} if |[B2| = |ER| +1,
s ta if |[Bo| = |[EZ| -1 or |E2| = |EZ).

We see from the following simple observation that the number of S-odd alternating walks in
{P1, P,...,P;} is at least tg.

Lemma 10. Let {P1, Py, ..., Ps, R} be an alternating walk decomposition of E2 U Ef , and let
Sq (resp., sg) be the number of a-odd (resp., B-odd) alternating walks in {P1, Py, ..., Ps}. Then,
we have sq — sg = |EZ| — |ER|.

We choose tg 3-odd alternating walks in the decomposition arbitrarily and add them to P. Note
that u cannot be an end vertex of a $-odd alternating walk, and hence the addition of 3-odd
alternating walks does not affect the condition (9). Therefore, the edge set S = | Jpcp P satisfies
both of (9) and (S1).

Finally, we consider the condition (S2). We use a similar technique as in [2, 4, 5]. Let
G:(a,3) be a subgraph of G, (a, 3) defined as follows. From the multigraph Gr(a,), delete
successively all pairs of edges of color o and (3 respectively connecting the same two vertices
as far as such a pair of edges exists, and let G%(a, 8) = (V, E*) be the resulting multigraph.
Obviously, for each pair of vertices v,v’ there exists at most one edge connecting v and v’; an
edge (v,v') with color o (resp., B) is in E* if and only if |E2(v,v')| = |E2(v,v)| + 1 (resp.,
|EZ (v,v")| = |E%(v,v')| +1). Hence, any subset S of E* satisfies the condition (S2). This means
that if we consider an edge set of the graph G (a, 3) instead of the original graph G, (a, 3), the
condition (S2) is automatically satisfied. This modification does not affect (S1) since G%(a, 8)
is obtained by removing the same number of edges from ES and from EZ. Moreover, we have

dE (v,a) — dE" (v, B) = dr(v,a) — dx (v, B) (Vv eV).

This implies that the conditions concerning the balance around each vertex such as eligibility
condition (1) and the conditions (8) and (9) are not affected by the replacement of G (a,)
with G%(a,). In summary, this replacement of the multigraph does not affect the properties
shown in the previous discussion. This concludes the proof of Lemma 4.

References

[1] J. K. Dugdale and A. J. W. Hilton, Amalgamated factorizations of complete graphs, Com-
binatorics, Probability, and Computing 3 (1994) 215-231.

[2] A.J.W. Hilton and D. de Werra, Sufficient conditions for balanced and for equitable edge-
colouring of graphs, O. R. Working paper 82/3, Département de Mathématiques, Ecole
Polytechnique Fédérate de Lausanne, Switzerland, 1982.

[3] A.J.W. Hilton and D. de Werra, A sufficient condition for equitable edge-colourings of
simple graphs, Discrete Mathematics 128 (1994) 179-201.

[4] S. Nakano and T. Nishizeki, Scheduling file transfers under port and channel constraints,
International J. Foundations of Computer Science 4 (1993) 101-115..

[5] S. Nakano, T. Nishizeki, and N. Saito, On the fg-coloring of graphs, Combinatorica 10
(1990) 67-80.

[6] S. Nakano, Y. Suzuki, and T. Nishizeki, An algorithm for the nearly equitable edge-coloring
of graphs (in Japanese), IEICE Trans. Information and Systems J78-D-I (1995) 437-444.

[7] T. Ono, T. Hirata, An improved algorithm for the net assignment problem, IEICE
Trans. Fundamentals E84-A (2001) 1161-1165.

[8] H. Song, J. Wu, and G. Liu, The equitable edge-coloring of series-parallel graphs, Pro-
ceedings of the International Conference on Computational Science (ICCS 2007), Part III,
Beijing, China, May 27-30, 2007, Lecture Notes in Computer Science 4489, 457-460.

[9] D. de Werra, Some results in chromatic scheduling, Zeitschrift fiir Operations Research 18
(1974) 167-175.

[10] X. Xie, T. Ono, S. Nakano, and T. Hirata, An improved algorithm for the nearly equitable
edge-coloring problem, IEICE Trans. Fundamentals E87-A (2004) 1029-1033.

[11] X. Xie, M. Yagiura, T. Ono, T. Hirata, and U. Zwick, An efficient algorithm for the nearly
equitable edge coloring problem, J. Graph Algorithms and Applications, 12 (2008) 383-399.

