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Performance Evaluation of OhHelp’ed 3D Particle-in-Cell Simulation

HirosHI NAKASHIMA, ! YOHEI M1YAKE, 2 HiDEYUKI Usurt?
and YOSHIHARU OMURAT?

We proposed an efficient and scalable load balancing method named OhHelp for Particle-
in-Cell (PIC) simulations. This method simply and equally partitions the space domain, in
which charged particles are distributed nonuniformly in general, so that each computation
node works on each partitioned primary subdomain. Load imbalance problem caused by the
nonuniformity of the particle distribution is solved by making every but one node also work
on another subdomain where particles densely populate as its secondary subdomain together
with a part of particles in it. We applied the OhHelp method to a production level full-3D PIC
simulator for space plasma and evaluated its performance on our T2K Open Supercomputer.
As a result, we confirmed our simulator is not only efficient showing 150190 speedup with 256
CPU cores compared to the sequential execution of a reference simulator, but also scalable
in terms of both the space domain size and the number of particles as the break down of

execution times evidences.

1. Introduction

Particle-in-Cell (PIC) simulations are indis-
pensable for theoretical and practical research
of high-energy physics, space plasma physics,
cloud modeling, combustion engineering, and so
on®. Since a PIC simulation works on a huge
number of particles residing in a space domain
represented by a large number of grid points,
its parallelization is essentially required.

However, a simple particle decomposition
(e.g., 4)), which gives a statically partitioned
subset of particles to a computation node while
makes the space domain shared by all nodes,
is not scalable because the domain ‘size can-
not be enlarged proportionally to the number
of nodes. On the other hand, a simple domain
decomposition (e.g., 1)), which assigns a stat-
ically partitioned subdomain to a node which
also works on particles incidentally visiting the
subdomain, is also unscalable because a sub-
domain may have all particles when they are
concentrated in a small region. More sophis-
ticated domain decomposition, which dynami-
cally shift subdomain boundaries to keep the
uniformity of particle populations among sub-
domains by, for example, ORB®), is not scalable
again in the concnetrated situation because a
subdomain with sparsely populated particles
can be almost as large as the whole domain.

Therefore, - we proposed a new domain-
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decomposed PIC simulation method named
OhHelp?) aiming at the scalability in terms of
both space domain size and particle population.
This method simply and equally partitions the
space domain so that each partitioned subdo-
main is assigned to each computation node for
scalable simulation with respect to the domain
size. Load balancing and thus scalability in
terms of the particle populations .are accom-
plished by making each node help another node
having a densely populated subdomain, a part
of particles in which is deputed to the helper
node together with replicated field data associ-
ated to grid points in the subdomain.

In our first report®), we exhibited the effi-
ciency of a prototype simulator with OhHelp
but the good evaluation result was not very con-
fident due to the followings; the simulator was
two-dimensional rather than three-dimensional
for production level simulation; the implemen-
tation and evaluation were done with a large
scale shared memory supercomputer Fujitsu
PrimePower HPC2500 instead of distributed
memory systems being our real target; and
the performance was compared with a particle-
decomposed simulator which is automatically
parallelized possibly resulting in a certain un-
derestimation. Therefore in this paper, we show
our evaluation result of a full-3D production
level space plasma PIC simulator implemented
on our T2K Open Supercomputer?. We also
show the performance of a particle-decomposed
and manually parallelized simulator as the ref-
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Fig.1 Space Domain Partitioning

erence, execution time breakdown of our and
reference simulators, and fundamental perfor-
mance numbers to predict the performance ac-
cording to future extension of our simulator in
terms of functionality and/or scale.

2. OhHelp Overview

As shown in Fig. 1, OhHelp simply partitions
the simulated space domain into equal-size sub-
domains and assigns each subdomain to each
computation node as its primary subdomain. In
the figure, non-italic numbers are the identifiers
of nodes and also those of primary subdomains

~assigned to them. Each node is responsible for
its primary subdomain, and also all the parti-
cles in it if the numbers of those primary parti-
cles in subdomains are balanced well, or more
specifically, if the number of particles P, in a
subdomain d satisfies the following inequality
for all d,

PdS(P/N)(l_‘_a)EPlim (1)
where P is the total number of particles, N is
the number of nodes; and « is the tolerance fac-
tor greater than 0. We refer to the simulation
phases in this fortunate situation as those in
primary mode.

Otherwise, i.e., if the inequality (1) is not sat-
isfied for some subdomain d as shown in Fig. 1,
the simulation is performed in secondary mode.
In this mode, every node, except for one node
(12 in the figure), is responsible for a secondary
subdomain having particles more than the av-
erage, in addition to its primary one. For ex-
ample, the subdomain 22 has helper nodes 02,
30 and 33 shown in italic letters in Fig.1. The
particles in a heavily loaded subdomain are also
distributed to its helper nodes as their sec-
ondary particles so that each node n has @,
particles in total, which reside in the primary
or secondary subdomain of n, satisfying the fol-
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Fig. 3 Helper-Helpand Tree for Balancing Result in
Fig. 2(b)

lowing inequality for balancing similar to (1) for
all n.
Qn < (P/N)(1+a):P1un (2)

Note that since all but one nodes have sec-
ondary subdomains, a node whose primary sub-
domain is heavily loaded, e.g., node 22, is not
only helped by other nodes but also helps an-
other node 20, as the balancing algorithm or-
ders as shown in Fig.2. That is, when it is
found that the inequality (1)/(2) is not satis-
fied in primary/secondary mode, the balancer
establishes the helpand-helper family for the hel-
pand node 22 with helper nodes 02, 30 and 33
giving them secondary particles of P/N — P,
to make Q,, = P/N for each m € H(22) =
{02,30,33}. Then, since this results in that
the number of primary particles remaining in
the node 22, i.e., Pyy — ZmEH(QZ)(P/N - P,)
becomes less than P/N, the balancer makes
the node 22 help the other node 20 to result
in @22 = P/N, and then makes the node 20
help 12 so that Q29 = P/N, while the node 12
does not help any other node as the root of the
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Fig.4 3D PIC Simulator with OhHelp

helpand-helper tree shown in Fig. 3.

The tree is traversed in bottom-up (leaf-to-
root) manner to examine whether the inequality
(2) is satisfiable in secondary mode. For exam-
ple, if Py; or Pa3 becomes larger than Py, we
cannot keep good balancing without reestab-
lishing the tree to give a helper to one of them.
Otherwise, but if Pi1 > 3Py, — (Po1 + P23) =
P),, the family cannot sustain particles in the
subdomain 11, 01 and 23 and thus we fail the
examination. Otherwise, after similar examina-
tions for the families rooted by 31 and 20 and
the leaf nodes 10 and 00, we examine whether;

P13 < 6Py — (P +Py+ Psy+Pro+ Poo)
holds and if so the helpand-helper configuration
is still capable to keep good balancing.

Then a top-down traverse of the tree takes
place to redistribute particles in the subdomain
primary to each helpand among the helpand-
helper family. We need this redistribution for
the particles just coming to the subdomain
crossing its boundaries, and for those which
cannot be sustained by helpers because primary
particles of them and/or their descendants be-
come too many.

For detailed algorithm of balancing, sustain-
ability examination of helpand-helper configu-
ration and particle redistribution in helpand-
helper families, see 3).

3. 3D PIC Simulator with OhHelp

We applied the OhHelp method to our pro-
duction level full-3D PIC simulator for space
plasma®). As the implementation outline in
Fig. 4 shows, the main loop of the simulator
consists of the following phases.

particle pushing: FEach node accelerates
its primary and secondary particles by Lorentz

force law referring electromagnetic field data
E and B associated to the grid points in its
primary and secondary subdomains, and then
moves particles according to their updated ve-
locities. Particle movements crossing subdo-
main boundaries will be taken care of by the
last phase but the number of crossing is counted
to build the histogram of the particle amount in
each subdomain. This phase is executed locally.

current scattering: Each node locally cal-
culates the contributions of the movement of
its primary and secondary particles to the cur-
rent density J at the grid points in its pri-
mary and secondary subdomains. Then an
all-reduce communication is performed in each
helpand-helper family to sum up the current
density in the subdomain of the family. Fi-
nally, the boundary values of J are exchanged
between primary subdomains and then broad-
casted from the helpand to its helpers.

field solving: Each node locally updates
the value of E and B at the grid points in
its primary and secondary subdomains using
leapfrog method to solve Maxwell’s equations.
Then the boundary values of E and B are ex-
changed between primary subdomains and then
broadcasted from the helpand to its helpers.

load balancing and particle transfer-
ring: The histograms of particle residence
are exchanged by an all-to-all communication
and an all-gather one. The former acquaints
each node with the number and the sources of
boundary crossing particles into its primary re-
gion. The latter is to make all nodes share the
number of primary and secondary particles in
each node, with which the balancing algorithm
discussed in Section 2 is executed in all nodes.
If it is necessary to change the secondary sub-
domain assignments, each node broadcasts its
electromagnetic field values to its helpers af-
ter new helpand-helper families are established.
Then, after each node makes the schedule of
particle transfer for its primary region and no-
tifies involved nodes of it, particles are trans-
ferred among nodes.

4. Performance Evaluation

4.1 Evaluation Setup

We coded the PIC simulator discussed in the
previous section using Fortran 90 for the main
part of the simulation and C for OhHelp load
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balancer, with MPI 2.0 communication library.
Then the program was executed on our T2K
Open Supercomputer® | which has 416 Fujitsu’s
HX600 server nodes each of which is equipped
with four quad-core Opteron 8356 processors,
32 GB shared memory and four-way Infiniband
4x DDR links for full-bisection and 8 GB/s per-
node high-throughput interconnect. We used
up to 16 nodes or 256 cores by mapping each
. MPI process onto a core.

We evaluated our simulator with two types
of scaling, namely strong scaling and weak scal-
ing (Fig. 5). For the former, we fixed the space
domain size to 643 grid points and the num-
ber of particles to 227. Then the domain is de-
composed for 2% x 2¥ x 2% process arrays where
2° 1 2Y 1 2% iseitherof 1 : 1:1,2:1:1 or
2:2: 1. For weak scaling, on the other hand,
we fixed the subdomain size to 323 and the av-
erage number of particles in a subdomain to 223
with the shapes of process arrays same as the
strong case. Thus the total domain size of 256-
process execution is 256 x 256 x 128 and the
number of particles is 231,

With both scaling types, we examined the
performance with two extreme initial particle
distributions, balanced and unbalanced. In
the balanced case, particles are uniformly dis-
tributed in the space domain and have a con-
stant initial velocity toward x-axis so that par-
ticles steadily travel to keep simulated in pri-
mary mode with perfect load balancing. In the
unbalanced case, particles are also uniformly
distributed and have the constant initial veloc-
ity but reside in a small cubic region of 323
at the bottom-south-west corner of the cuboid
domain. Therefore, we have an extreme imbal-
ance of particle amounts especially in the weak
scaling experiment in which particles reside in
at most two subdomains.

We performed simulations for 6400 time
steps, in which a particle travels 32 grid points,

Table 1 Performance of Strong Scaling

#fproc | part.decomp. balanced unbalanced
1 2.88/ 1.00 2.55/ 0.89 2.55/  0.89
2 5.61/ 1.95 4.74/ 1.65 4.31/ 1.50
4] 11.27/ 3.92 9.98/ 3.47| 857/ 298
8| 2045/ 7.11| 1831/ 6.36| 15.70/ 5.46
16| 36.21/12.58 | 34.30/ 11.92| 30.54/ 10.61
32| 59.32/20.62| 68.94/ 23.96| 60.42/ 21.00
64| 83.63/29.06 |137.98/ 47.95|121.42/ 42.19

128 | 98.88/34.36 | 269.20/ 93.55 | 238.67/ 82.94
256 |101.42/35.25 | 519.04/180.38 | 457.49/158.98
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Fig. 6 Performance of Simulations

and with periodic boundary condition com-
monly for the four combinations of strong/weak
scaling and balanced/unbalanced cases. The
tolerance factor o in inequalities (1) and (2)
was also commonly set to 0.2.

4.2 Strong Scaling Performance

Measured performance numbers of strong
scaling executions with up to 256 processes
(cores) are shown in Table 1, while Fig.6
shows them graphically together with those of
weak scaling which is discussed latter. The per-
formance numbers in the table are displayed in
the form of “speed/speedup”. The simulation
speed in the unit of particle-per-second (PPS)
is defined by the number of particle pushes
performed in on second. The speedup is the
simulation speed normalized by that of the se-
quential execution of the reference implementa-
tion only using particle decomposition method
whose performance is also shown in Table 1.
Note that this reference sequential execution
has no overhead for parallelization, while one-
process execution of our simulator incurs self
communications of particle movements crossing
periodic boundaries and for exchanging bound-
ary field/current values by itself. The absolute
execution time of the reference sequential ex-
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Fig. 7 Breakdown of Strong Scaling Execution Time

ecution is about 83 hours or three days and
a half, while 256-process strong scaling execu-
tions take 28 minutes and 31 minutes with bal-
anced and unbalanced setting respectively.

Table 1 and Fig.6 clearly shows that that
our simulator exerts good scalability and much
more scalable than the reference particle-
decomposed type simulator as expected. The
performance saturation of the reference simula-
tor is caused by the cost of all-reduce commu-
nication in current-scatter phase for the 643 x
3 x 8 = 6 MB array of current density, which
becomes the dominant factor as the number of
processes increases. In fact, from the observa-
tion of Fig, 7(a) which shows the breakdown
of the 256-process execution time for one time-
step, we can find that execution time propor-
tional to the number of particles (“particle”)
takes only 15.5%, while 73% is for the all-
reduce (“comm. (current)”) and the remaining
and non-negligible 11.5% is for the field solving
(“field”).

On the other hand, our simulator looks exert-
ing unsaturated performance. A closer look of
the numbers, however, reveals that the paral-
lel efficiency descends from almost stable 74 %
in balanced and 65 % in unbalanced case up to
128-process execution down to 70 % and 62 % in
256-process one. This is an Amdahl’s law effect
caused by the collective communications for
particle amount histogram which takes about
5% of the total execution time (see “comm.
(hgram)” in Fig. 7(a) and (b)). This proves, on
the other hand, that our 256-process simulation
is only 5 % slower than the best case of a simple
domain-decomposed type one because the his-
togram manipulation is the sole thing added to
it in the balanced case.

The dominant factor to decrease the perfor-
mance of the unbalanced case from the balanced

Table 2 Performance of Weak Scaling

F#proc balanced unbalanced
1 2.55/ 0.89] 255/ 0.89

2| 495/ 1.72| 4.63/ 1.61

4 9.11/ 3.16| 8.06/ 2.80

8| 18.31/ 6.36| 15.70/ 5.46

16| 34.44/ 11.97| 30.58/ 10.63

32| 68.57/ 23.83| 59.88/ 20.81
64|137.13/ 47.66|122.29/ 42.50
128 |274.00/ 95.22|245.64/ 85.36
256 | 545.86/189.69 | 478.93/166.44
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Fig. 8 Breakdown of Weak Scaling Execution Time

one is again the all-reduce of the current den-
sity in each helpand-helper family, which takes
about 11 %, but this is much smaller than that
in the reference simulator because the reduced
array size is shrunk to 8 x 8 x 16 or 1/256 of
the reference simulator’s. The other factors are
so small that 1.5% degradation by the broad-
cast of electromagnetic field data on boundaries
(“comm. (field)”) is most significant.

4.3 Weak Scaling Performance

The weak scaling simulation took 6-8 hours
approximately irrespective of the number of
processes because the problem size is enlarged
according to the number of processes. Its per-
formance shown in Table 2 and Fig. 6 is bet-
ter than the strong scaling as expected. More
importantly, the parallel efficiencies above 16
processes of balanced and unbalanced cases are
both stable even in 256-process executions at
75 % and 66 % respectively. This is led by the
fact that the Amdahl factor of histogram com-
munication is almost invisible in the breakdown
shown in Fig.8 and merely occupies about
0.5% of the whole. Thus, as far as this factor
concerns, the simulation will be weakly scalable
at least up to 4096 processes at which it will in-
cur about 10 % histogram communication over-
head even if we assume collective communica-
tion costs proportional to the number of pro-
cesses.
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As in the strong scaling, the major degrada-
tion factor from balanced to unbalanced set-
ting is the all-reduce of current density which
explains about two-third of 14 % degradation,
and is followed by the boundary communication
of electromagnetic field which causes about 2 %
degradation. The other factors, such as solving
field twice, checking good load balancing and
relatively irregular particle transfer communi-
cations, are cuite small and less than 1% for
each.

4.4 Poisson’s Equation Solving

Since our simulator is for space plasma and
adopts so-called charge conservation technique,
it is unnecessary or at most very infrequently
required to solve Poisson’s equation explicitly
to have electrostatic potential from charge den-
sity. However, in other types of problems such
as those involving conductors in the space do-
main, solving Poisson’s equation in every time
step is essentially required?®.

Thus we experimentally attached a Poisson’s
equation solver based on a simple but paral-
lelized three-dimensional FFT and evaluated
the performance of this version. As the 256-
process performance in Fig. 9 shows, the global
operations in FFT, such as transposition of
three-dimensional grid point array, is not very
harmful to scalability. That is, the perfor-
mance degradation due to the Poisson solver
is small especially in weak scaling executions,
only 3% and 1.6 % in balanced and unbalanced
settings respectively. Although this cannot con-
clude that FFT-based Poisson solver is scalable
with more processes and larger space domain,
at least it is confirmed that PIC simulations re-
quiring frequent solving of Poisson’s equation
are fairly efficient with thousand-scale paral-
lelization.

5. Conclusion

In this paper, we proposed a new method
for PIC simulations, named OhHelp, to achieve
both good load balancing and scalability. The
OhHelp method simply and equally partitions
the space domain for scalability with respect to
domain size. It also copes with the imbalance of
the number of particles in subdomains by mak-
ing each node help another node to which a
densely populated subdomain is assigned. Our
implementation of ‘a three-dimensional space
plasma simulation with OhHelp exhibits a good
scalability showing 150-190 speedup with 256
processes compared to the sequential execu-
tion of a reference particle-decomposed simu-
lator whose speedup is saturated at about 35-
fold.
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