MFEAN EROBRES HRSSE
IPSJ SIG Technical Reports

2009-ARC-181,72009-EMB-11 (9)
2009/1/14

Object-Oriented Programming and Testing Environment
for an FPGA Using CORBA/GIOP Protocol

CORBA/GIOP %[\ 7= FPGA [fliF47 U= MBI a s 530 7 -5 ANBES

Takeshi Ohkawa (KJI| %E)

National Institute for Advanced Industrial
Science and Technology (AIST),
Information Technology Research Institute (ITRI)
Umezono 1-1-1, Tsukuba Central 2
Tsukuba, Ibaraki
+81-29-861-9146

ohkawa-takeshi@aist.go.jp

ABSTRACT

A small software and a circuit system are implemented on a Xilinx
Spartan 3E FPGA, which handles CORBA (Common Object
Request Broker Architecture) / GIOP (General Inter ORB
Protocol) message with small runtime memory footprint (about
below 16K Bytes) in small circuit size (about below 1500 LUTs).
The small circuit system, which is named “ORB Engine”, is
composed of MicroBlaze soft-core processor provided by Xilinx,
UART (Universal Asynchronous Receiver and Transceiver)
controller and Interrupt controller. Connecting the ORB Engine’s
UART port to the PC’s serial port, user’s circuit resided on the
FPGA can be operated from the PC by a simple remote method
call. The ORB Engine interprets a method-call request from the PC,
set the parameter value to the user’s circuit, retrieves the output
from the user’s circuit and sends the result back. The ORB Engine
is an interface for a circuit in an FPGA, easily understood by
software engineers. The whole system works as an object-oriented
programming and testing environment. The proposed system
contributes to design quality of FPGAs in embedded systems.

Keywords
ORB, Object Request Broker, GIOP, FPGA, Testing, Distributed
Object

1. INTRODUCTION

1.1 FPGA'’s Role in Embedded System

FPGA (Field Programmable Gate Array) has become a popular
and standard platform to implement a desired logic into a
hardwired circuit. By using FPGA, fine customization of an
embedded system is enabled by its programmability.

FPGA vendor Xilinx is providing a product named “EDK
(Embedded Development Kit) [1]” as an FPGA development
environment for embedded systems. In the EDK suite, there are
two development environments; “Platform Studio” for hardware
design by connecting IP components and “Platform SDK
(Software Development Kit)” for software design using C/C++
language in Eclipse [2] environment. The Platform SDK is capable

-45 -

KenjiToda (FH B&I)

National Institute for Advanced Industrial
Science and Technology (AIST),
Information Technology Research Institute (ITRI)
Umezono 1-1-1, Tsukuba Central 2
Tsukuba, Ibaraki
+81-29-861-5875

k-toda@aist.go.jp

to configure the software in conjunction with the hardware
configuration, such as memory mapped address, properly.

Moreover, the logic design can be done even in a high level
language of ANSI-C or C-like language, for example, Impulse-
C [3]. They spread out the possibility of FPGA-based embedded
system design. Ordinary software engineers are expected to be
involved into the embedded system design using FPGA.

Meanwhile, micro-controller chips have most generic ready-made
interfaces on-chip with very low cost compared to FPGA. For
example, a USB port, a Universal Asynchronous Receiver and
Transceiver (UART: PC’s serial port), CAN, PCI, A/D, D/A.
Converter and so on. The micro-controller chips are generally
more popular than FPGA in constructing embedded systems.

Embedded systems in the area of advanced applications, however,
often require special interface. For example, a rotary encoder is
used in robots in order to detect the rotation angle of an axis.
Usually it is not covered by the standard micro-controller chips. In
the rotary encoder, phase A and phase B signals are used to detect
the rotation angle from the state transition of the two signals. If the
transitions of the signals are slow, software on a micro-controller
also can detect, however, if the speed of tramsition is high,
software would miss tracking the signal. Therefore, a signal edge
detection circuit is always dedicated to detect signals watching. In
such cases, the traditional way is utilizing the external counter IC;
however, FPGA can load every special interface on-chip to build
the system.

FPGA in embedded system has an important role in the era of fine
customization, in order to add high value to the system,

1.2 What is good for Designing and Testing

FPGA for Embedded System?

Development of an embedded system which is composed of a
circuit and software needs a “good” programming and testing
environment. It is because the circuit and the software are related
tightly and affect each other. Especially recent system with
multiple processors are making the programming and testing much
difficult.

Before going into the detail, we need to define the term “good” is
for whom? Assume there are three kinds of engineers or
programmers concerned with the FPGA project: A. Hardware
Engineer, B. Embedded System Specialist and C. Software
Engineer (Fig. 1).

Fig. 1 the suitable method differs among the type of
engineers to access the circuit in the FPGA

Next, think that an engineer has a circuit programmed on an FPGA.

Candidates of the method to access the circuit are listed below,

1. JTAG interface: to read and write the in-circuit signal
register with a special debugging environment, which can
treat JTAG.

Memory mapped register: connect a CPU directly to the
circuit through processor BUS and make the circuit register
accessible from the CPU.

Hardware engineers and embedded specialists may choose 1. It is
the lowest-level abstraction and is a good method for the early
stage of development. Difficult timing problems should be treated
at this level. Software engineers have less concern to this level and
there is no need to understand the details of the circuits.

Embedded specialists may choose 2. Hardware engineers, too.
Software engineers are asked to use this method, too. It is thought
to be acceptable to the software engineers; however, progressive
software engineers think that C/C++ is a low-level language.
Their real intention is that writing a program should be done in
highly productive programming languages such like Java, Python
or another script language.

Until here, it has become obvious that a good method for accessing
the circuit differs among the type of engineer or programmer, and
by the abstraction level. Another point is that software engineers
has good practices of building software, however, once you are
designing an embedded system, C/C++ is still the maximum
choice.

As productive design methodology, an object-oriented
programming (for example, Java, Ruby) and testing (for example,
JUnit) are widely accepted methodologies in the PC domain and
the enterprise server domain.

1.3 Utilize Object Request Broker Middleware

for FPGA Access

In addition to the programming languages, distributed object
middleware like CORBA (Common Object Request Broker
Architecture) makes the platform boundary transparent and
therefore improves the productivity. For example, an object

- 46 -

written in C++ running on a server can be called from a client
program on PC written in Java through GIOP (General Inter
Object Protocol) over TCP/IP network.

CORBA is at a neutral position from programming languages. IDL
(Interface Definition Language) is used to define the interface of
the object (Fig. 2). The objects with an interface defined by IDL
can interpret the object ‘messages each other, using common
protocol (Inter-Operability), even the objects are implemented in
any different programming language. Therefore, even if a new
language appeared, if the new language adapt to CORBA, all
languages adapted to CORBA can understand each other.

Because the platforms of embedded systems are versatile, CORBA
is essentially useful for connecting PC to an embedded system / an
embedded system to an embedded system. However, it is usually
implemented to use TCP/IP socket. And the memory footprint is
large up to several mega bytes. Many CORBA implementations
for the PC as a target server, with rich functionality is large in size.
They are roughly 2 Mbytes to 8 Mbytes (in case of OmniORB [4],
MICO [5] and Java[8][9][10]).

Therefore, the authors think that the key is a very lightweight
CORBA implementation, which can run on FPGA with limited
resource.

module robot {
interface Arm {
void init();
unsigned short getAngle();
void setTorque(in long newvalue, out long current);

Y

b

Fig. 2 an example of IDL code

2. CONCEPT PROPOSAL

2.1 “ORB Engine” as an Interface of a Circuit
The authors would like to propose a method to access a circuit in
an FPGA based on the previous discussion. The purpose is to
provide a good tool which would be welcomed from software
engineers.

/, Robot-Arm Gbject

P

Rotation Angle Detecto
(Rotary Encoder)
Fig. 3 The concept of the FPGA programming or
testing system with ORB Engine using object level
message communication

“Hi, Robot-Arm.
What degree?”

“12.3 degree.” pC

Fig. 3 shows the concept of “ORB Engine”, our proposal. The
circuit “Quad counter” as an example in the figure is driven by the
object method call level message from PC through ORB Engine.
That means FPGA programming or testing is done using object
level message communication. During the development of
embedded systems, instant question for a component is useful. For
example, asking Robot-Arm object its angle by sending a message,
“Hi, Robot-Arm. What degree?”. Then the object will reply “12.3
degree” as shown in the figure.

2.2 Benefit of using CORBA for the Circuit

Control
There are many benefits of using CORBA to control the circuit in
FPGA.

Firstly, you can use a number of programming languages to
control the circuit. Currently. there are 10 IDL to language
mapping; C, C++, Java, Lisp, Python and so on.

Secondly, various tools for PC software development can be
utilized for the circuit control. Especially, a unit test tool JUnit can
be used for the circuit function test.

The biggest benefit is that the circuit can have an object oriented
interface. You can define an arbitrary interface you need. As the
interface is same, the circuit can be replaced to another one. If
necessary, you can replace your hardwired circuit into a software
model, at the various phase of the development.

Another attraction is that some types of FPGA have dynamic
(partial) reconfiguration feature. Dynamic replace of the circuit is
possible, without causing the software version mismatch problem.

3. SYSTEM DESIGN

3.1 Purpose of Implementation

To estimate the reasonable size of hardware and software, a
working implementation is inevitable. The aim is to make an
minimum size system, but answer to CORBA/GIOP messages.

3.2 The Choice of Transportation Channel
Until now, CORBA is developed for TCP/IP on the Ethernet.
However, the choice of TCP is not always the best solution.

To satisfy the above noted purpose, the simplest UART is chosen
for the implementation. The benefits of using simple UART
interface are low-cost, easy-to-use and not-too-slow as allowable.

Fig. 4 shows the detailed architecture of the client/server system.
Client is made on PC and Server is made on FPGA. This
research’s main target is the server on the FPGA, however, to
control the server on the FPGA, the client on PC must be prepared.

TCP/IP Socket

Server

Fig. 4 Detailed CORBA Client / Server system
model using UART as a transport channel

3.3 FPGA Design

ORB engine is implemented on Xilinx FPGA Spartan3E-500 as in
Fig. 5. The resource usage is shown in Table 1. The ORB Engine
has only 4 external pins: clk, rst, rx and tx. The message comes

from the rx pin and interpreted within the MicroBlaze processor,
and makes interaction with the IP core and returns data to tx.

1lclock & Reset

Interface
for PC

ORB Engine

._l [Inter‘face to the real world

Fig. 5 FPGA Design done in the Xilinx EDK platform
studio environment (PLB for Processor Local BUS)

Table 1. Resource usage of the FPGA design

(ORB Engine part only)
Capacity Ratio
Resource Used (Spa 3¢500) (%)
4-input LUTs 1467 9312 15%
' 10Bs 4 232 1%
Block RAMs 8 20 40%

3.4 FPGA side Software Design

The ORB engine software is implemented in C language using
Platform SDK environment. It is not depend on any operating
system. Some standard functions and device drivers are from
Xilinx. The minimum runtime footprint is about 12KB (the
detailed value is available in the following table. 3), in case that
there is only one object of an interface with one method, and there
is no error handler.

As shown in Fig. 4, there are only two tasks runs on the CPU. One
is a interrupt driven task which takes data from the UART
transceiver to the shared ring buffer. The other is the main task to
interpret the GIOP message stored in the shared ring buffer.
Because the UART controller has a FIFO (First-In First-Out)
buffer only with the depth of 16, the first task is needed not to
overflow the buffer.

3.5 PC side Software Design
At first, “TCP to UART” bridge server is implemented to pass thru
the data received from the TCP port to the UART port.

In CORBA, the location of the servant object is designated in
various ways. IOR (Interoperable Object Reference) is the most
standard way to do it. In our system, CORBA client should make a
connection to the “TCP to UART” bridge at localhost. For that
purpose, the IOR is generated to designate the listening port of the
“TCP to UART” bridge at PC. Using the architecture, an ordinary
CORBA can be used without modification to communicate with
the ORB Engine after UART channel.

-47-

4. EVALUATION

4.1 Experimental Setup
In order to evaluate the MicroBlaze ORB Engine, experimental
setups are prepared.

We used the DOPG’s interoperability test suite [7] for the
measurement. (DOPG stands for Distributed Object Promotion
Group). It is originally intended to evaluate the interoperability of
various CORBA products. In this experiment, the IDL file of
“dopgrm11.idl” is used for the round trip delay time. The remote
method call latency measurement is done using the op1 methed of
the rfl1 interface. The IDL of op1 is shown in the Fig. 6

interface rmll {
short op1(in short argin,

out short argout,

inout short arginout);

};

Fig. 6 IDL declaration used in the experiments

The version of OmniORB is 4.0.7, MICO is 2.3.12, JavaIDL is
JDK1.6.0. OmniORB and MICO are used for a C++ mapping and
JavaIDL is used for a Java mapping of IDL.

Experimental setups #1 to #3 are ordinary CORBA usages through
TCP/IP connection. Setups #4 to #7 are through UART

The UART’s baud-rate is fixed to 115.2 KHz. In UART protocol,
the data transfer is done by a 8-bit character in this case. Before
the send start, 1bit start bit is added, and after the character 1bit
stop bit is added. That is, 10bit is needed to send a character.

#5 and #7 uses TCP to UART bridge process to pass thru the data
from TCP port to UART serial port as explained in Fig,. 4.

#4 and #6 uses directly modified UART output is used. It means
that the source code tcpConnection.cpp of OmniORB is directly

Table 2. Experimental Setup

#| Client {,il;? fr't:?ii'.'. gérlg Server

! Ol?gﬁgm - TCP/IP - 01?313;!3

2 ?gi? - TCP/IP . l(vgfg

3 J?}'ZV.BL - TCP/IP . Ja(l}r:.‘gL

4| OmiORB | Dirt | gy | Direct | OmuiORB

5 0‘?3‘3?3 Bridge | UART - glgﬁl;i
6 0?3’3?3 n?:;cf; UART | - (I;Axl‘{;m;;i;
! Jﬁff Bridge | UART . yémeﬁ;i

- 48 -

4.2 GIOP Messaging Behavior

At first, message transaction between the client and the server is
observed. Fig. 7 shows the transaction during the two remote
method calls of opl method. At the first time, Locate Request is
issued to ensure the servant object existence. After that, Locate
Reply is returned, which says “Object is here”. Next, Request is
issued from client. Then the opl operation is executed at the server
side, and returns Reply message. At the second time opl call, no
Locate Request message is sent. Because the messaging behavior
at the first method call is different from the second one, the round-
trip delay measurement is done for the second call.

In addition, the actual data amounts transmitted is counted. In the
case of TCP/IP transport shows 66 bytes more data is transmitted.
This is due to the TCP/IP header, while UART transmit the bare
data. i

TCP/IP UART
(Bytes) (Bytes)
opl
oL 139 7
«—totate Reply ise L 2.
150 84
ot 9% 30
call [~ MM ——Reques 126 60 __
%. 30

Fig. 7 The GIOP messages exchanged during two
opl calls

4.3 Round-trip Delay
The measured round-trip delay time is shown in Fig. 8.

140
120

8

-]
o

61190

20 15.99 17[14 15.83
.00

Round trip delay (ms)
[=))
o

1 2 3 4 5 6 7
Experimental Setup

Fig. 8 Round trip delay at a remote method call
(average of 4 times remote call)

All the measurement is done for remote method call between
separated PCs / FPGA board. Each PC equips a 1000Base-T

o N e Y

Ethernet interface card. OmniORB exhibits the fastest round trip
delay among the three full spec CORBA implementations with
TCP/IP transportation (#1 - #3).

#4 is a reference setup in order to measure the latency of PC’s
serial port. It has about 16 ms delay; even a modern PC is used.

#5 and #6 are the round trip delays of the MicroBlaze ORB Engine
servant objects. They are almost same latency as #4. That means
most of the delay is due to the PC’s serial port or the device driver
for it. The difference between #5 and #6 is small. The “TCP to
UART” bridge caused no serial delay at this point.

#7 shows the latest delay. In case of #7, the bridge and the
JavaIDL client is running on the same PC, however, in #5, the
bridge and the OmniORB client are running on different PC.

Anyway, the CORBA/IIOP on UART is much slow than TCP/IP,
however, the FPGA can behave like CORBA servant. And the
delay is enough allowable for the debugging control purpose.

4.4 Memory footprint

Table 3 shows the comparison of memory footprint between the
full spec CORBA implementation - OmniORB-4.0.7 and the ORB
Engine on MicroBlaze. This shows that the ORB Engine is made
from totally different way of implementation. The ORB Engine
doesn’t understand the entire CORBA message. Only necessary
part is implemented. That enables the very small footprint.

Table 3. Comparison of Memory Footprint
OmniORB-4.0.7-i386

ORB Engine MicroBlaze

5. FUTURE PLANS

5.1 Versatile Transportation Channels

There are possibilities to choose other transportation channels. The
candidates are Real-time-Ethernet, FlexRay, CAN, LIN, and
Rocket 1/0. Because their circuit implementations are mostly
providled as a proven and ready-to-use IP cores, the
implementation will not take so long time.

5.2 Acceleration of CORBA

In order to accelerate CORBA operation, there is a possibility
to use this ORB Engine as a co-processor of a main processor.
CORBA’s processing has less parallelism. A dedicated
MicroBlaze processor for ORB processing as reported in this paper
may be enough.

5.3 Security Issue

For a debug purpose, the ORB Engine can be detached prior to the
release; however, if the ORB Engine is embedded in a product, the
security should be taken into account.

-49.

5.4 Error Recovery

The UART cannot recover communication error. For a critical
mission, choosing another reliable communication channel is
better.

5.5 Code Generator (IDL Compiler)

Currently, the message decoding and encoding are done by
manually. That is the location of parameter data is specified by
manual. The operation to write some code can be automated using
the information from IDL.

5.6 Design shrinking
Instead of the MicroBlaze processor, smaller PicoBlaze processor
may be used to drastically reduce the LUT count.

6. DISCUSSION

6.1 “ORB Engine” introduces the Iterative

Development into FPGA design
What happens if the “ORB Engine” concept is introduced to the
FPGA development in embedded system?

FPGA can be programmed many times. This advantage of "Re-
programmability" will change the hardware design process and
flow. Current FPGA design is still done in the hardware culture. In
recent years, however, the importance of software in embedded
systems tends to become larger. Therefore the introduction of
software culture will lead to productivity gains.

First change is that the FPGA circuit designers can release small
and tentative first release of working implementation quickly. (The
term "release" means making his design available to others.) Then
he can release the extended features and the performance
improvements step by step.

The conventional hardware (ASIC) designer’s method is firstly to
decide the overall framework, next to do functional partitioning
and module partitioning, and then assign a task to each engineer.
Therefore the time for the release is relatively long and difficult to
estimate the progress.

Additionally, the FPGA circuit designers will be able to accept the
customer's changing needs of the market. Because FPGA is re-
programmable, while ASIC has no flexibility, designers can
realize the idea into processor based on customer’s needs agile.
Despite the fact that FPGAs are "physically" freely programmable,
by the same problem as in software, you cannot change because
the failure caused by the change is unpredictable.

One of the answers concluded by software engineering is
"Integration of Testing and Implementation." In other words,
demanded features are described as a test program. And
implementation is done to pass the test program. This “Test First
Method” has been recognized as a method which can contribute to
improving the quality. Accordingly, "refactoring" is also actively
done, which is to improve the implementation and the quality of
the source code without changing the interface.

The corresponding development tools to the methodology are
widely used in software development. For example, Java has an
open source unit test tool “JUnit”. For test-driven development
(test-first development), of course, for the traditional waterfall

development, it is used effectively. Furthermore, “CUnit” is for C
language, “CPPUnit” is for C++ language, “xUnit” is for another
language. .. The effectiveness of test is recognized widely.

However, the FPGA designs for the "integration testing and
implementation," the concept of the pervading hard to say. For
FPGAUnit, there are no signs of emergence.

The ideal development and testing environment for FPGA in
embedded system is; runtime is minimal in memory foot-print.
And the test is done in rich development environment where
highly productive programming languages and tools.

The ORB Engine may promote the testing of FPGA in software
manner.

7. RELATED TECHNOLOGIES

“IONA technology [11]” is a major provider of CORBA
products for an embedded market. Their minimum memory
footprint is 100Kbytes for client and 150Kbytes for server.
However they must be much decent implementation than us.

Prismtech [12] is providing FPGA version of CORBA for
military applications and “Objective interface systems” is
providing OrbExpress[13]. They both are selling very small
footprint CORBA for General Purpose Processors and FPGA
version. The performance of the FPGA version is said 100 times
faster than GPP version. Their target is mainly SDR (Software
Defined Radio) application.

8. CONCLUSION

In this paper, small CORBA/GIOP handling software and circuit
implemented on an FPGA are presented. The software runs on
Xilinx MicroBlaze soft-core processor. The implementation uses
the simplest interface, UART (Universal Asynchronous Receiver
and Transceiver) which is connected to PC’s serial port. The
benefits of using simple UART interface are low-cost, easy-to-use
and not-too-slow, and very commonly used.

At first, the software object on the sofi-core processor can be
easily controlled from the PC. In the case of multiple processors,
you can add debugging “physical” UART ports as many as you
want because of its low cost. And the designed circuit on the
FPGA under development can also be directly controlled from the
PC through the soft-core processor.

-50-

Finally, a cross development environment in the object-oriented
testing manner can be built. The proposed system contributes to
add a freedom of choice of programming and testing language, for
the wide range of embedded systems.

9. ACKNOWLEDGMENTS

This study was supported by Industrial Technology Research
Grant Program in 2007 from New Energy and Industrial
Technology Development Organization (NEDO) of Japan.

10. REFERENCES

[1] Xilinx EDK http://www.xilinx.com/

[2] Eclipse http://www.eclipse.org/

[3] Impulse-C http://www.impulsec.com/

[4] OMG (The Object Management Group) hitp://www.omg.org/

[5] OmniORB http://omniorb.sourceforge.net/

[6] MICO hitp://www.mico.org/

[7]1 DOPG (Distributed Object Promotion

Group) http: w.dopg.gr.ip/en/

“Memory Utilization Analysis of Java Middleware for

Distributed Real-time and Embedded System”, R.Qu,

S.HIRANO and T.OHKAWA, Parallel and Distributed

Computing and Systems (PDCS 2006), November 13-15,

2006,

“Java 2 RMI and IDL Comparison”, M. B. Juric and I.

Rozman. Java Report, 5(2):36~48, Feb. 2000.

[10] “More Efficient Object Serialization”, M. Philippsen, B.
Haumacher, IPPS/SPDP Workshops, 1999

[11] IONA Technology http://www.iona.com/

[12] PrismTech http://www.prismtechnologies.com/
[13] ObjectivelnterfaceSystems http:/www.ois.com/

{81

[9]

