2009—AL—122 (2)
200971730

FEEREN LB B
IPSJ SIG Technical Report

_ HEAFRYIRTLIIETE
FIEARZAFy THEBRT7ZILITY) XA

R R T, Hk RETT, BE S
T ARSI AT RSB R R

BE HE AT ~ORFREOELE FMRE L 3% RMR(Remote Memory Reference) &5 12
UTHERORWHEHRT IV ITY AL 2BETZ. HEHROBRE RMR &8 1 BOEEEEOE
BODIZT DL ANFTS RMR OEETHS. N 70w ZMEHRT VTV X ADHE RMR &
B3 0(log N) TH3BZ EAHBNT VS, T RBERHIRD 0(log N) TH B2, £< DT 0L A
PVRBIZEFES 2T OHECHRORNT N TY ALERBEL, ZOMRME2SLFEHLYI 2
=3 YD Oo0FEZAVTRYT. ILIT7NITY XA 2 EMEFREICEL CREL2TS.

Mutual Exclusion Algorithm
with Skipping Arbitration Tree

Tsuyoshi SUSUKI T Michiko INOUE T Hideo FUITWARA 1
t the Graduate School of Information Science, Nara Institute of Science and Technology

Abstract We propose an efficient mutual exclusion algorithm with respect to remote memory
reference(RMR) complexity that measures remote accesses to shared memory. The worst-case RMR
complexity for one access to a critical section with N processes has been proven to be O(log N).
Though our algorithm has the same worst case RMR, complexity, the algorithm becomes efficient
with increasing the number of processes executing concurrently. We show the efficiency using
queueing theory and simulation. Furthermore, we improve the algorithm so that the elapsed time
from some process exits its critical section to the next wanting process enters its critical section is

reduced.

1 Introduction

The mutual exclusion problem is a fundamental
problem in distributed synchronization problems
and solves conflicting access to shared resources.
In a mutual exclusion algorithm, each process re-
peatedly executes four sections idle, entry, critical,
and exit in this order. Entry and exit sections have
roles to ensure that critical sections are executed
exclusively.

Remote memory reference (RMR) complexity
is a meaningful measure for algorithms for dis-
tributed systems with a shared memory hierarchy.
The RMR complexity counts remote memory ac-
cesses that involve the interconnect traffic among
processes, and represents communication and com-
putation costs of the algorithms.

In the worst-case RMR complexity for N pro-
cess mutual exclusion algorithms using read and
write operations has been investigated. Many al-
gorithms [4, 6, 3] use an N/2 leaf binary tree called
an arbitration tree whose nodes resolve two pro-
cess mutual exclusion to solve N process mutual
exclusion problem. Yang et al. [6] proposed an

algorithm with RMR complexity of O(log N) and
space complexity of O(NlogN). Kim et al. [3]
optimized the space complexity to O(IN) with pre-
serving RMR complexity of O(log N). Anderson et
al. [1] proposed an adaptive mutual exclusion al-
gorithm whose RMR complexity depends on point
contention & that is the maximum number of active
processes at the same time. Its RMR complexity
is O(min(k,log N)), that is, it is efficient when the
point contention is low. Attiya et al. [2] proved the
lower bound of Q(log V). Therefore Yang’s algo-
rithm [6] is optimal with respect to the worst-case
RMR complexity.

In this paper, we propose a mutual exclu-
sion algorithm that is efficient in the case where
many processes concurrently execute the algo-
rithm. Though our algorithm still has the worst-
case RMR complexity of O(log N), we show the
expected RMR complexity is reduced in some high
congested situations. We demonstrate the effi-
ciency of the proposed algorithm using queueing
theory and simulation.

The rest of this paper is organized as follows.
Section 2 defines the model, and Section 3 briefly

9

introduces Yang’s algorithm [6]. Section 4 de-
scribes the proposed algorithm Tree Skip (TS) and
we improve T'S to Fast Tree Skip (FTS) in Section
5. Finally we concludes the paper in Section 6.

2 Model

2.1 Shared Memory System

Shared memory system consists of multiple pro-
cesses and shared memories. The processes exe-
cute asynchronously and communicate with each
other via the shared memories. The shared mem-
ories can be accessed by read and write operations.
We consider two types of system with memory hi-
erarchy.

A distributed shared memory model (DSM) con-
sists of distributed local shared memories for pro-
cesses. Each process locally accesses the variables
on its local memory and remotely accesses the vari-
ables on other processes’ local memory.

In a cache coherent model (CC), each process
has copies of shared variables whose consistency is
guaranteed by a coherence protocol. If the cache
has the latest value of a shared variable, the ac-
cess to the variable is local. Otherwise, the remote
access is induced.

2.2 Mutual Exclusion Algorithm

Each process that executes a mutual exclusion
(ME) algorithm repeatedly executes four sections,
idle, entry, critical and ezitin this order. Each pro-
cess executes its entry and exit sections to ensure
that critical sections are executed exclusively. We
assume that the execution time of a CS is finite.
Each process does nothing in its idle section (IS),
and a process in its IS can start its entry section
at any time.

In ME algorithms, entry and exit sections are
designed to satisfy the following conditions.
Exclusion: At most one process executes its CS
at any time.

Starvation-freedom: FEach process that exe-
cutes its entry section eventually executes its CS.

We evaluate ME algorithms with RMR complex-
ity. The RMR complexity for ME algorithms is the
number of remote memory references for each pro-
cess during its entry and exit sections before and
after each execution of its critical section respec-
tively.

3 Previous Work

3.1 Yang’s algorithm

Yang et al. [6] proposed an N process ME algo-
rithm YA with RMR complexity of O(log N). YA
uses a two process ME algorithm (2PME-YA) with
constant RMR complexity as a building block.

In YA, the N process ME problem is solved by
applying 2PME-YA in a binary tree called an ar-
bitration tree with N/2 leaves. Every process is
assigned to some leaf of the arbitration tree accord-
ing to its process ID (Fig. 1(a)), and the process
traverses a path from its leaf to the root while exe-
cuting an entry section of 2PME-YA at each node.
Each node has entries from two sides (0 and 1) to
distinguish two processes that visit the node. The
process can execute its CS when it completes the
entry section of 2PME-YA at the root. After exe-
cution of the CS, the process then traverses a path
from the root to its leaf while executing an exit
section of 2PME-YA at the each node. Therefore,
the N process ME problem is solved with O(log N)
RMR complexity.

process

(a) Algorithm YA

Fig. 1 Algorithm YA and TS

(b) Algorithm TS

4 Algorithm TS

4.1 Basic Ideas

In ME algorithms using an arbitration tree [4, 6, 3],
a process that requires to visit all the nodes in the
path from its leaf to the root.

We propose an algorithm using an arbitration
tree, where some processes can skip to visit nodes
in the path to the root. The proposed algorithm
TS (Tree Skip) consists of an arbitration tree with
N/2 leaves and a waiting array with size of N *.
We add a node consists of 2PME-YA at the top
to satisfy exclusion. Let the top node denote the
node. Each process checks if it was added to the
array at each node in the path. In that case, it
waits without traversing the path and then if it
was retrieved from the array, it executes two pro-
cess ME of the top node (Fig. 1(b)). Meanwhile,

* We assume N is power of two for simplicity, but the
algorithm can be easily adjusted to the general N case.

ID : process identifier

const
L :logN

shared variables
T[0..N — 1] : integer
C[0..N —1][0, 1] : integer initially — 1
P[1..logN +1][0..N — 1] : (0,1, 2) initially 0
WI[0..N — 1] : integer initially — 1
Added[0..N — 1] : (0, 1, 2) initially O
Add : integer initially N — 1
Call : integer initially N — 1

Fig. 2 Shared Variables in T'S

each process that checked it was not added the
array continues to traverse the path. Finally, pro-
cesses come from the arbitration tree and the wait-
ing array visit this node before entering their CS,
and the top node guarantees exclusion. We call
our two process ME algorithm 2PME.

In TS, a process that completed its CS traverses
the same path in its entry section in the opposite
direction to add other processes that wait at the
nodes in the path to the waiting array. Processes
are added to and retrieved from the waiting array
in FIFO (First In, First Out) order. This guar-
antees a process added to the array is eventually
retrieved from the array, so that the algorithm sat-
isfies starvation-freedom. We show the code of TS
in Fig. 3.

4.2 Algorithm
4.2.1 Shared Variables

Figure 2 describes the shared variables in TS. We
use array 1", C and P for the same purpose as YA.
An array W is the waiting array and Add and Call
indicate the head and tail of the array. Added[p]
is used to inform p that p is added to the waiting
array, where value 1 means that p is added to the
array. Value 2 means that p is allowed to leave
the waiting array. In DSM, P[p] and Added[p] are
local variables of the process p.

4.2.2 Entry Section

Entry section is from line 3 to 20 in the Fig. 3. In
lines 3 to 12, each process executes its entry section
of 2PME from its leaf (level 1) to the root (level
log V). If the process notices that it is added to
the waiting array (line 7) on the way to the root,
it skips the remaining nodes and waits until it is
allowed to proceed to the top node (line 18). The
process completes its entry section after complet-
ing its entry section at the top node. Let 2PME(n)
and 2PME(n, s) denote 2PMEs at a node n and
at a node n with a side s, respectively.

4.2.3 Exit Section

Exit section is from line 22 to 39. In this sec-
tion, each process executes the operations for the
waiting array before executing its exit section at
the top node. Therefore, these operations are ex-
ecuted exclusively, and the waiting array is main-
tained properly.

In AddtoArray (Fig. 5), each process p adds
other processes to the waiting array. Process p
checks nodes through the path traversed at its en-
try section in the reverse order. If there are waiting
processes at some nodes, p adds the processes to
the waiting array.

In DecisionCall (Fig. 6), a process p determines
if there is a process that can proceed to the top
node by checking a value of W. Process p decides
to allow a process g to proceed to the top node, if
other processes that was allowed to proceed to the
top node through the waiting array executed their
exit section at the top node (value —1). Decision-
Call just checks the existence of such a node, and
it is allowed to proceed later.

Finally, a process p executes its exit sections at
the nodes through the path traversed by p in the
reverse order.

4.3 Correctness

We prove the correctness of TS. In the proof,
l@p(Func) means a line [for a process p in a func-
tion Func and /@ (Func) means a line [in a function
Func. [l;@p(Func), l;@p(Func)] means an execu-
tion which is started at {;@p(Func) and is com-
pleted at l;@p(Func). In this section, “call” means
that to execute 31Q(TS). We omit proofs of the
lemmas. The proofs are appeared in [5].

4.3.1 Exclusion

The following condition is satisfied for all the nodes
from both sides in YA [6].

Condition 1 ([6]). At most one process
concurrently executes [1@Q(Entry2PME(n, s)),
1Q(Exit2PME(n, s))] for a pair of node n and side
s.

If Condition 1 is satisfied for all the nodes from
both sides, exclusion is satisfied. The arbitration
tree in TS includes YA. Thus, Condition 1 is sat-
isfied for nodes except 2PME(0). Furthermore, a
process that executes its entry section at 2PME(0,
1) corresponds to a process that executes its CS in
YA. Because YA satisfies exclusion, this condition
is satisfied for 2PME(0, 1). Thus, exclusion is sat-
isfied if we just prove that Condition 1 is satisfied
for 2PME(0, 0).

Algorithm 2 Entry2PME(node, side, h:integer)

Algorithm 1 TS

private variable
h, node, side, tmpcall, rival : integer
skip : integer initially — 1
callflg : boolean

1: while true do
2: idle section;
/¥entry section*/
for h:=1to L do

node := L———(N;’,fmjg
side := LU;’,“,L_IlD)J mod 2;

3
4
5:
6: Entry2PME(node, side, h)
7¢
8
9

if Added[ID] > 0 then
await Added[ID] > 1
: skip := h;
10: break;
11: end if
12: end for
13: if skip = —1 then

14: skip .= L;

15: Entry2PME(0,1,L + 1)
16: side := 1,

17: else

18: Entry2PME(0,0, L + 1)
19: side := 0;

20: end if

21: critical section;

/*exit section*/
22: AddtoArray(skip)
23: callflg := DecisionCall(side)
24: if callflg = true then

25: tmpcall ;= Call

26: rival := W [tmpcall];
27: W tmpcall] := —2;
28: end if

29: Exit2PME(0, side, L + 1)
30: if callflg = true A Added[rival] =1 then

31: Added[rival] := 2;

32: end if

33: for h := skip down to 1 do
34: node := Lw—;r;{ﬂj;

35: side 1= L%J mod 2;

36: Exit2PME(node, side, h)

37: end for

38: skip := —1;

39: Added[ID] := 0;
40: end while

Fig. 3 Algorithm 1 TS

private variable
rival : integer

1: Clnode][side] := ID;

2: T[node] := ID;

3: P[h][ID] := 05

4: rival := C[node][l — side];

5: if rival # —1 then

6: if T[node] = ID then

7 if P[h][rival] = 0 then
8: Pl[h][rival] := 1;

9: end if

10: await P[h][ID] > 0
11: if T[node] = ID then
12: await P[h|[ID] > 1
13: end if

14: end if

15: end if

Fig. 4 Algorithm 2 Entry2PME

Algorithm 3 AddtoArray(skip: integer)

private variable
h, node, rival, tmpadd : integer

1: tmpadd := Add;
2: for h := skip down to 1 do

3: node := L%&J;

4: rival := T'[node];

5: if rival # ID then

6: tmpadd := (tmpadd + 1) mod N;
7 if Added[rival] = 0 then

8: Added[rival] := 1;

9: W [tmpadd] := rival;

10: end if

11: end if

12: end for

13: Add := tmpadd;
Fig. 5 Algorithm 3 AddtoArray

Algorithm 4 DecisionCall(side: integer)

private variable
tmpcall, precall, rival : integer
callflg : boolean initially false

precall := Call;

tmpcall := (precall + 1) mod Nj;

rival := W [tmpcall];

: if rival > 0 then

if side = 0V W{precall] = —1 then
Call := tmpcall;
callflg := true;

end if

: end if

: if side = 0 then

Wprecall] := —1;

: end if

13: return(callflg);

Fig. 6 Algorithm 4 DecisionCall

PROORNPUR W

Algorithm 5 Exit2PME (node, side,h :integer)

private variable
rival : integer

: C[node][side] := —1;
: rival := T[node];

: if rival # ID then
Plh][rival] := 2;
: end if

Fig. 7 Algorithm 5 Exit2PME

TU WO N

71‘7

Lemma 1. At most one process concurrently ex-
ecutes [18Q(TS), 28@(TS)] for the pair of node 0
and side 0.

Theorem 1. TS ensures exclusion.

4.3.2 Starvation-freedom

We prove starvation-freedom for TS. All waiting
loops in entry sections of T'S are eventually finished
iff TS ensures this property. For any process p,
there are the following three waiting loops in its
entry section.

Wait 1. 10@p(Entry2PME) (await P[h][p] > 0)
Wait 2. 8Qp(TS) (await Added[p] > 1)

Wait 3. 12@p(Entry2PME) (await P[h][p] > 1)
The following lemma hold for YA [6].

Lemma 2 ([6]). Wait 1 is eventually finished.

In TS, each process operates same as YA in the
case that it and another process concurrently exe-
cute each entry section of 2PME at a same node.
Thus, Lemma 2 holds in TS too.

Lemma 3. Wait 2 is eventually finished.
Lemma 4. Wait 3 is eventually finished.

By Lemma 2, 3 and 4, TS satisfies starvation-
freedom.

Theorem 2. TS ensures starvation-freedom.

4.4 Evaluation of TS

We evaluate RMR complexity for the proposed al-
gorithm. We show the worst case complexity, and
then give two kinds of analysis using queueing the-
ory and simulation.

We first show the updating rule of Added|[p].
There are three operations that update Added|[p].
Update 0 at 39@p(TS) (p initializes it)

Update 1 at 8@(AddtoArray) (p was added to the
array)

Update 2 at 31Q(TS) (p was called)

The following lemma and corollary hold on the up-
date. The proof is appeared in [5].

Lemma 5. If Update 2 is executed after any pro-
cess p writes T' to p, Added|[p] is not updated until
8@p(TS) is completed.

Corollary 1. After Update 1, p does not execute
Update 0 until 8@p(TS) is completed.

We show the relation between RMR complexity
and the number of nodes that a process visits in
its entry section.

Lemma 6. RMR complexity of TS for N pro-
cesses is proportional to the number of nodes that
a process visits in its entry section.

Proof. In TS, a process executes its entry section
of 2PME, one iteration of AddtoArray and its exit
section of 2PME at each node. These are able
to be executed with constant remote memory ac-
cesses. Process p executes other operations while
it is in the waiting array in [7@(TS),8@(TS)]. In
the case of DSM, p executes no remote memory
access since Added[p] is local to p. In the case of
CC, Corollary 1 means that once Added[p] is set
to 1, it is stable to 1 until it is set to 2. This
implies that p executes constant remote memory
accesses in the waiting array. Therefore, other
procedures (waiting the array (8@(TS)), skipping
nodes ([29@(TS), 31@Q(TS)]) and DecisionCall) are
executed with constant remote memory accesses
too. Thus, TS’s RMR complexity is proportional
to able to the number of nodes that a process visits
in its entry section. a

4.4.1 Worst Case Complexity

Each process traverses the path from its leaf to the
root. Therefore the process visits at most log N +1
nodes.

Theorem 3. RMR complexity of TS for N pro-
cesses is O(log N)

4.4.2 Analysis by Queueing Theory

In TS, the more processes concurrently execute
their entry and exit sections, the more frequently
they skip the nodes of the tree. We evaluate this
using queueing theory.

We evaluate the average case RMR complexity
in the case where all the processes behave uni-
formly. We use M /M /1(1) queueing system that
has negative exponential interarrival times and ser-
vice times with a single server and no waiting
queue. Let A and p are an average arrival rate and
average service rate, respectively. In M /M /1(1)
system, probability P,.p, that the system is in ser-
vice and probability Pe,pty that the system is not
in service are given as follows.

A
Pocpy = m (1)
I
Pempty = i (2)

Service Model We consider a service for each
side at each node, where a service at level [starts
at 2Q(Entry2PME) and ends at 4@(AddtoArray)
with A = [(Fig. 8). We consider the case where the
average interarrival rate and the average service
rate are the same for the same level. That is, a
service for a process p at level [includes services
for p at level I'(I’ > l). Let Ay and ux denote the

average interarrival rate and the average service
rate for a service at level k, respectively.

We analyze the case where the interarrival and
service times for at level 1 (leaf level) are negative
exponentially distributed. We apply M /M /1(1)
system to the services.

First, we calculate Ay, (k =2, --- log N) (Fig.
9). We consider a process p starts the service at
level k — 1 at some node. If no process is in service
at the same node, p is not added to the waiting
array and will start the service at level k. Since
each node has entries from two sides, A is derived
as follows.

)\k = 2/\k—1Pempty,k—1 (3)

Next, we calculate pr. Assume that a process
starts a service at level k. In this case, when the
process executes 2@(Entry2PME) at level k — 1,
if no process is in service at the same node, the
process completes Entry2PME at level k — 1 with-
out waiting other processes’ operations at 10@Q(En-
try2PME) or 12@(Entry2PME), since waiting pro-
cess u is eventually added to the waiting array and
never proceeds to a node at level k. Therefore, the
difference of service time between levels £ — 1 and
k is one iteration of the loop at [3@(TS), 12Q(TS)]
and one iteration of the loop at [2@(AddtoArray),
12@Q(AddtoArray)]. Therefore, the time difference
is considered to be independent of levels. Let m
denote this time difference. Thus, uy is derived as
follows.

1 1
Mk Hik—1

—-m 4)

We can obtain Pycpyr and Pempiyr from the
equations (3) and (4) and obtain the expected
number E of nodes that a process visit in its entry
and exit sections as follows.

log N—1
E= Z {Pstop,k(k+1) }+ Ppass,log n-(log N+1)
k=1
(5)
where

Ppass,k = Pempty,l . Pempty,Z teeet Pempty,k (6)

and

Pstop,k = Pocpy,k y Ppass,k—l (7)

Case Study We use values of parameter shown
in Table 1 as default, and consider cases by varying
parameters.

Figure 10(a) shows the case where the average
service time is varied. The number of visited nodes

AddtoArray
«—>

| entry] critical I exit]
1
level 1 R
Hy
level2 ——m :
o # N
T [m,
level logN < -~logN-1)-m—>
m=m,+m,

Fig. 8 The service at each level

The service at level 2

The service at level 1

Fig. 9 The recursive calculus of \x and uik

is reducing with increasing the service time. We
consider this is because the longer the service time
is, the more frequently processes skip.

Figure 10(b) shows the case where the average
interarrival time and the number of processes N
are varied. When the interarrival time is long, the
numbers of visited nodes close to log N + 1 and
the numbers are reducing and converge to 2 with
reducing the interarrival time. We consider this
is because the shorter this time is, the more con-
gested the system is and the more frequently pro-
cesses skip. Furthermore, this result shows when
the system is much congested, the expected num-
ber of visited nodes does not depend on the num-
ber of processes.

]

30

ry

20 [N=210

3

[

o / e
10° 10 10° 10°
average interarrival time

0 . . \
107 10° 10?7, 100 10°
average service time

expected number of nodes
S

expected number of nodes

(a) Service Time (b) Interarrival Time

Fig. 10 Expected Number of Visited Nodes

4.4.3 Analysis by Simulation

Simulation Setup We evaluate the perfor-
mance of TS by simulation. In the simulation,
execution times of IS, CS, one remote memory ac-
cess, one local memory access and one local op-

Table 1 Case Study Prameters

Parameter Value
Number of Processes 65536
Average Interarrival Time 1000
Average Service Time 1000
m 0.001

eration are different for every processes and their
average times among processes are varied in the
range of £100% of the values in Table (2). These
execution times for each process is varied in the
range of £50% of the averages. We set a band-
width that is the maximum number of processes
accessing shared memories concurrently as in Ta-
ble (2).

‘We measure RMR complexity and the execution
time that is taken in entry and exit sections for one
CS. We simulate T'S until each process executes its
CS 1,000 times. Since the performance only after
the system is in equilibrium is meaningful, we get
the data after every process enters its CS 10 times.

Table 2 Simulation Setup Prameters

parameter value

number of processes 16384
IS 10T

CS 5000

avg. remote memory access 500
of avg. time | Tocal memory access 5
Tocal operation 1

bandwidth 16384

Results We show the results for only DSM, since
the results for CC are similar to the case of DSM.
Figure 11 (a) shows the RMR complexity when
the avg. of avg. IS time is varied. It is observed
that the shorter IS time is, the fewer RMR com-
plexity is. Also, Fig 11 (b) shows the result when
the avg. of avg. CS time is varied. It is observed
that the longer CS time is, the fewer RMR com-
plexity is. We consider the more congested system
(the sorter IS time or the longer CS time) is, the
more processes try to execute their CS and less
RMR complexity is. However, when the system
is not congested (long IS execution time or short
CS execution time), T'S has more RMR complexity
than YA. This is because TS always has overhead
to maintain the waiting array even if there are no
process to be added to the array.

We further examine the performance at high sys-
tem congestion. We change the avg. of avg. times
of IS and CS into 0 and 50, 000, respectively. Fig-
ure 12 shows the RMR complexity when the num-
ber of processes is varied. We find that TS’s RMR

—1

complexity does not depend on the number of pro-
cesses while YA’s RMR complexity depends on it.

Finally, we evaluate an actual execution time for
the entry and exit sections. Figure 13 shows the
execution time of entry and exit sections before
and after each execution of CS. In the case where
the bandwidth is narrow, the execution time of T'S
is shorter than YA, but it is longer than YA when
the bandwidth is wide. We consider this is because
each process executes AddtoArray and Decision-
Call exclusively in TS, and no process can start its
CS until the process completes these procedures.
‘We consider such waiting time has a significant in-
fluence for the execution time.

150 - 150
120
90
6o f

RMR complexity
RMR complexity

30

0 n
10?10t 100 10t 10
avg. of avg. CS time

(b) CS Time

102 10° 10" 10
avg. of avg. IS time

(a) IS Time

Fig. 11 RMR complexities and IS/CS execution
time

> 150 [—
%5120 [TS —— aln
S0l e 1
8 60| A §
™

I, S S —
S 0F -

o

—

100 10000
number of processes

Fig. 12 RMR complexity and the number of pro-
cesses

12:10°

1010° feees A

execution time

8.0-10% : :
1 100 10000

bandwidth

Fig. 13 Execution time and the bandwidth

5 Improving TS to FTS

In TS, each process has 20 remote memory accesses
at the beginning of its exit section before the next
process starts its CS. That is a main reason why

5 —

TS has longer execution time. We modify TS to
FTS(Fast TS) to resolve this problem.

FTS has two key ideas. First, we separate the
privilege to maintain the waiting array from the
privilege to execute CS. A process that completes
its CS first releases the privilege for CS, and then
starts to get the privilege to maintain the waiting
array. Second, we divide the waiting array into
two for skipping process to execute CS before the
waiting array is maintained.

Figure 14 shows the overview of FTS. To ex-
ecute CS, processes from two waiting arrays and
an arbitration tree compete in three process ME
3PME(0). A process leaves 3PME(0) at the be-
ginning of its exit section so that the next process
can start CS soon. Then, the process starts to get
the privilege to maintain the waiting arrays. At
that time, the next process from the same waiting
array might catch up on the process, therefore at
most 5 processes only join the competition. This
modification enable each process to have only 4 re-
mote memory accesses at the beginning of its exit
section before the next process starts its CS. The
detail of FTS are described in [5].

We evaluate the execution time of FTS by sim-
ulation. Figure 15 shows the simulation results
for the cases when (a) average CS time are differ-
ent among processes, and (b) average CS time are
common to processes. We find that the execution
time is improved to almost the same value as YA.

maintenance of
waiting arrays

.......... N+3
fiako fisidf 1

critical section

o 10°
. 1.2:10° L , 1210 .
g TS —— g TS —a—
s] e 5 1 FIS —omoe
§1010° Howaw 4 £ 1010° K,
3 | 2 |
2 i }
5 (o 5 it St : 5 .
8.0-10° ; - 8.0-10°
1 100 10000 1 100 10000
bandwidth bandwidth
(a) Different avg. CS (b) Constant avg. CS
time time

Fig. 15 Execution time and the bandwidth

6 Conclusion

We proposed the mutual exclusion algorithm for
distributed system with shared memory hierarchy.
Though the RMR complexity of O(log N) is the
same as the existing algorithm, the proposed algo-
rithm is efficient with respect to RMR complex-
ity when many processes execute the algorithm
concurrently. We demonstrated the efficiency by
queueing theory and simulation.

Furthermore we improved the algorithm to re-
duce the actual execution time, and demonstrated
the efficiency by simulation.

Though the proposed algorithms have the space
complexity of O(Nlog N), the idea [3] to reduce
the complexity is applicable, and it can be im-
proved to O(N).

The future work is to propose algorithms that
are efficient in the both cases of low and high con-
gestions.

References

[1] J.H. Anderson and Y.J. Kim. Adaptive Mu-
tual Exclusion with Local Spinning. Dis-
tributed Computing: 14th International Con-
ference, DISC 2000, Toledo, Spain, October
2000: Proceedings, 2000.

2

H. Attiya, D. Hendler, and P. Woelfel. Tight
RMR Lower Bounds for Mutual Exclusion and
Other Problems. Proceedings of the fourtieth
annual ACM symposium on Theory of comput-
ing, pages 217-226, 2008.

[3] Y.J. Kim and J.H. Anderson. A space-and
time-efficient local-spin spin lock. Information
Processing Letters, 84(1):47-55, 2002.

[4] G.L. Peterson and M.J. Fischer. Economical
solutions for the critical section problem in a
distributed system. In Proceedings of the ninth
annual ACM symposium on Theory of comput-
ing, pages 91-97. ACM New York, NY, USA,
1977.

[5] T. Suzuki, M. Inoue, and H. Fujiwara. Efficient
Mutual Exclusion Algorithm for High System
Congestion. NAIST Information Science Tech-
nical Report, NAIST-1S-TR2009001, 2009.

[6] J.H. Yang and J.H. Anderson. A fast, scalable
mutual exclusion algorithm. Distributed Com-
puting, 9(1):51-60, 1995.

