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Background: Glycans, or sugar chains, are one of the three types of chain
(DNA, protein and glycan) that constitute living organisms; they are often
called “the third chain of the living organism”. About half of all proteins are
estimated to be glycosylated based on the SWISS-PROT database. Glycosy-
lation is one of the most important post-translational modifications, affecting
many critical functions of proteins, including cellular communication, and their
tertiary structure. In order to computationally predict N-glycosylation and O-
glycosylation sites, we developed three kinds of support vector machine (SVM)
model, which utilize local information, general protein information and/or sub-
cellular localization in consideration of the binding specificity of glycosyltrans-
ferases and the characteristic subcellular localization of glycoproteins. Results:
In our computational experiment, the model integrating three kinds of informa-
tion achieved about 90% accuracy in predictions of both N-glycosylation and
O-glycosylation sites. Moreover, our model was applied to a protein whose gly-
cosylation sites had not been previously identified and we succeeded in showing
that the glycosylation sites predicted by our model were structurally reasonable.
Conclusions: In the present study, we developed a comprehensive and effec-
tive computational method that detects glycosylation sites. We conclude that
our method is a comprehensive and effective computational prediction method
that is applicable at a genome-wide level.

1. Introduction

Glycans, or sugar chains, are one of the three kinds of chain (DNA, pro-
tein and glycan) that constitute living organisms; they are often called “the
third chain of the living organism”. Within an organism, glycans mainly ex-
ist as glycolipid or glycoprotein. Efficient chemical synthesis of sugar chains
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has been well studied in combinatorial chemistry 1)–3). Recently, glycosyltrans-
ferases that catalyze the transfer of monosaccharides to specific residues in pro-
teins have been well studied in biology and pathology 4)–6). In some glyco-
proteins, glycosylation or attachment of carbohydrate polymers to an amino
acid residue has been studied in detail 7)–10). However there have been no gen-
eral approaches that can comprehensively detect glycosylation sites and identify
protein-bound glycan structures in living cells. Hence, though there exist sev-
eral databases on glycans including KEGG GLYCAN 11) and Glycan Database
(http://www.functionalglycomics.org/glycomics/molecule/jsp/carbohydrate/
carbMoleculeHome.jsp), there are currently no comprehensive and useful
databases on glycosylation.

In the present study, we focused on glycosylation. Glycosylation is one of the
most important post-translational modifications, affecting many critical functions
of proteins, including cellular communication, and their tertiary structure 12).
About half of all proteins are estimated to be glycosylated based on the Swiss-
Prot database 13). There are four different types of glycosylation, namely, via N-
glycosylation, O-glycosylation, C-mannosylation and glycophosphatidlyinositol
(GPI) anchor attachments. In this study, we developed a method that predicts
N-glycosylation, or glycosylation of Asn (N) residues, and O-glycosylation, or
glycosylation of Ser (S) and Thr (T) residues, sites, in proteins.

Several computational approaches to predict O-glycosylation sites in proteins
have been developed in recent years 14)–19). Statistical learning methods, such
as artificial neural network (ANN) and support vector machine (SVM), have
been widely utilized for this purpose. In these studies, each amino acid residue
was represented by a feature vector in which only local information, or a win-
dow of fixed length surrounding the residue (Fig. 1), was considered. However,
glycosyltransferases attach sugar chains to amino acid residues specifically by

Fig. 1 The sequence window used to encode local information of proteins. k upstream and
downstream residues of the target residue (N in italic) were extracted (k=10, in this
figure). To encode one residue in the sequence window, we utilized BLOSUM62 profile
encoding (the corresponding row in the BLOSUM62 matrix).
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26 Support Vector Machine Prediction of N- and O-glycosylation Sites

recognizing the structure of the whole protein, rather than the individual residue
only 20)–22). Thus, in predicting glycosylation sites, general protein information,
or whole-sequence information should be considered. Moreover, the subcellular
localization of glycoproteins is characteristic 15),23),24). For example, most mem-
brane proteins have glycans outside the cell membranes and can be regarded as
glycoproteins. Hence, we need to utilize not only local information, but also
general information and subcellular localization, to predict glycosylation sites.

In this study, we constructed four kinds of SVM model to predict glycosy-
lation sites. The window model was based on only local information. The
whole-sequence and localization model utilized, in addition to local information,
general information about the proteins and subcellular localization respectively.
The integral model integrated local information, general protein information and
subcellular localization. In our computational experiments, the whole sequence,
localization and integral models showed better prediction performances than the
window model. Moreover, we validated the effectiveness of our model by pre-
dicting glycosylation sites that were structurally reasonable in a protein whose
glycosylation sites were unknown.

2. Results

2.1 Prediction Performance of the Proposed Method
Table 1 shows the prediction performances when our proposed four kinds

Table 1 Prediction performances of four different models.

model Accuracy Sensitivity Precision MCC AUC
N-glycosylation sites
Window (N1) 0.767 0.494 0.658 0.412 0.814
Window + di-pep (N2) 0.884 0.766 0.840 0.721 0.942
Window + subcellular (N3) 0.822 0.640 0.743 0.568 0.891
Window + di-pep + subcellular (N4) 0.896 0.808 0.844 0.752 0.952
O-glycosylation sites
Window (O1) 0.784 0.534 0.708 0.473 0.831
Window + di-pep (O2) 0.893 0.779 0.868 0.748 0.949
Window + subcellular (O3) 0.813 0.639 0.732 0.553 0.866
Window + di-pep + subcellular (O4) 0.897 0.790 0.870 0.756 0.952

Window means local information is used for prediction. Similarly, di-pep means the use of
general information and subcellular means that of subcellular localization.

of SVM model were applied to the N-glycosylation and O-glycosylation site
datasets. Using only local information, the accuracy (described later in Meth-
ods) was 0.767 when the model was applied to the N-glycosylation site dataset
and 0.784 when applied to the O-glycosylation site dataset. When utilizing all
available information, the accuracy was 0.896 when the model was applied to
the N-glycosylation site dataset and 0.897 when applied to the O-glycosylation
site dataset. The prediction performances with several kernels were shown in
Supplementary Material 1.

The whole-sequence model (N2 and O2 in Table1), using local information and
general information, showed significantly better prediction performances than
the window model (N1 and O1 in Table1). However, the localization model, in-
tegrating local information and subcellular localization, (N3 and O3 in Table1)
showed smaller improvement in performance than the whole-sequence model (N2
and O2 in Table1). These results can be elucidated by biological properties
represented by both whole-sequence information and subcellular localization in-
formation. Subcellular localization is determined partly by sorting signals, such
as the secretory signal peptide “Ser-Lys-Leu” 25). In fact, the frequency of a par-
ticular peptide is used to predict subcellular localization by WoLF PSORT 26).
Thus, counting the frequency of di-peptides in a protein sequence, which is used
to represent general information about proteins, partly corresponds to counting
signal peptides and considering subcellular localization information.

2.2 Comparison of Feature Representation of Local Information
with the Previous Studies

Several approaches to encode local information have been proposed 14)–17). We
compared these approaches using several lengths of the sequence window (Fig. 2).
As shown in Fig. 2, among the BLOSUM62 profile encoding, 0/1 encoding and
physico-chemical property encoding, the BLOSUM62 profile encoding system,
which was used in our method, was, except when using the window of length 4,
better than the other two encodings in the N-glycosylation prediction. On the
other hand, in the O-glycosylation prediction (Fig. 2), the 0/1 encoding system
was better than the other two encodings except when using the window of length
10. However, the difference between the performances of the 0/1 encoding system
and the BLOSUM62 profile encoding system was very small. As for the window
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27 Support Vector Machine Prediction of N- and O-glycosylation Sites

Fig. 2 Comparison of encoding systems. The transition of prediction performances in N-
glycosylation sites (A) and O-glycosylation sites (B) were shown. The lengths of se-
quence window were 4, 10, 20, 30 and 40. Four encoding systems, BLOSUM62 profile
encoding system, 0/1 encoding system, amino acid physico-chemical properties encod-
ing system and integrated encoding system which was combined by three encoding
systems, were applied.

length, the prediction performances almost generally peaked when using the se-
quence window of length 20. Thus we adopted the BLOSUM 62 profile encoding
system, using the window of length 20. Here, we confirm the superiority of our
feature representation method to those used in previous studies 14)–17). These
studies considered only local information; hence their method performance was
estimated to be nearly the same as “Window” in Table 1. Therefore, as our
method, utilizing the whole sequence information and subcellular localization,
improved the prediction accuracy of “Window” by more than 10 percent in both

Table 2 O-glycosylation site prediction in three protein sequences.

method Sensitivity Balanced accuracy

NetOGlyc 15) 0.563 0.728

EnsembleGly 16) 0.375 0.679
Our method 1.000 0.766

The BSP30, Kallikrein-1 and Ig delta chain C region have sixteen experimentally validated
O-glycosylation sites. Previous methods (NetOGlyc and EnsembleGly) and our method,
which used almost the same positive data to train the prediction model, were applied to these
sites. Our method achieved 1.000 (16/16) sensitivity, while the previous methods showed 0.563
(9/16) and 0.375 (6/16) sensitivity respectively. Balanced accuracy was calculated as follows;

Balanced accuracy =
1

2

(
TP

TP + FN
+

TN

TN + FP

)

N-glycosylation and O-glycosylation site prediction (Table 1), our method is com-
petitive with and sometimes surpass the previous methods.

2.3 Comparison of Prediction of Known O-glycosylation Sites
Our method and several previous methods 15),16) were applied to the sixteen

experimentally validated O-glycosylation sites of three protein sequences, which
are BSP-30, Kallikrein-1 and Ig delta chain C region (Table 2). Our method
and the previous methods used almost the same positive data, which didn’t
contain BSP30, Kallikrein-1 and Ig delta chain C region, to train the prediction
model. As shown in Table 2, our method achieved 1.000 (16/16) sensitivity,
while the previous methods showed 0.375 (6/16) and 0.563 (9/16) sensitivity
respectively. Moreover, our method showed better balanced accuracy than the
previous methods. Hence we can conclude that in predicting O-glycosylation sites
our method is competitive with and sometimes superior to the previous methods.

2.4 Validation of Biological Application of the Proposed Model to
the N-glycosylation Site Prediction

Although the previous studies 14)–17) focused on the O-glycosylation, our study
also produced the prediction model for the N-glycosylation. To confirm the
biological applicability of our prediction model, we predicted the N-glycosylation
sites of a protein, envelope glycoprotein gp120 precursor, whose glycosylation
sites have been identified. Gp120 was not included in the dataset.

Envelope glycoprotein gp120 precursor is a part of envelope glycoprotein from
AIDA virus 27) and has 17 consensus N-glycosylation motifs (Asn-Xaa-Ser/Thr).
Among them, 14 sites are validated to be glycosylated in the PDB database
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Fig. 3 3D structure of beta-secretase 1 (PDB ID:1FKN) BACE1 is an enzyme that breaks
down proteins and regulates functions of membrane proteins. Furthermore, it is known
to be associated with Alzheimer’s disease. BACE1 forms a homo-dimer.

(PDB ID: 1G9M).
10 out of these 14 sites were correctly predicted as glycosylation sites. More-

over, 2 of 3 non-glycosylation sites were successfully identified. Thus we conclude
that our model can be applied to glycoproteins with sufficient reliability.

2.5 Predictions for Unknown Glycosylation Sites
To validate the applicability of our prediction model at a genome-wide level,

we predicted the N-glycosylation sites of beta-secretase 1 (BACE1) whose glyco-
sylation sites have not been identified. BACE1 (Fig. 3) is an enzyme that breaks
down proteins, and which regulates the function of membrane proteins 28). More-
over, it is known to be associated with Alzheimer’s disease 29).

The BACE1 protein sequence has four consensus N-glycosylation motifs (Asn-
Xaa-Ser/Thr). We predicted whether these four sites would be glycosylated or
not using our method (Table 3). Three sites were predicted to be glycosylated
and the other one was predicted to be non-glycosylated. The prediction for these
four sites was finished within 0.3 seconds on a 2-CPU cluster (Opteron 275 2.2
GHz processors). This fast computation suggests our method can be applied at
a genome-wide level.

To confirm the validity of our predictions, the local structure around the pre-
dicted N-glycosylation sites in BACE1 as well as known N-glycosylation sites
in the training dataset were shown in Fig. 4. The molecular mechanism of N-

Table 3 N-glycosylation site prediction in BACE1.

Residue number Sequence window Prediction result SES (Å2)
153 TDLVSIPHGPNVTVRANIAAI Glycosylation site 26.88
172 AITESDKFFINGSNWEGILGL Glycosylation site 29.02
223 ISLYMGENVTNQSFRITILPQ Non-glycosylation site 5.99
354 AITESDKFFINGSNWEGILGL Glycosylation site 24.20

The BACE1 has four consensus N-glycosylation motifs (Asn-Xaa-Ser/Thr). Among these,
three sites (153rd, 172nd and 354th residue) were predicted to be glycosylated and the other
(223rd residue) was predicted to be non-glycosylated. SES areas of amido group of these 3
positive sites are clearly larger than that of the negative site.

glycosylation is that a glycan moiety is attached to an asparagine residue by
binding to the amido group in the target residue. As glycan moieties are larger
than amino acids with several monosaccharides that have a ring structure, some
space around the amido group of the asparagine is necessary for glycosylation
to occur. In particular, the amido group of the asparagine residue shown in
Fig. 4 (B), a known glycosylation site, has plenty of space around it and sticks
out. Similarly, the amido group of the 153rd asparagine residue predicted to
be a glycosylation site, shown in Fig. 4 (A), is likely to bind to a glycan moiety
since there is a lot of space around it and the amido group is very exposed. On
the other hand, the amido group of the 223rd asparagine residue predicted to be
non-glycosylated, shown in Fig. 4 (C), is less likely to be glycosylated, because
the space surrounding it is as small as a known non-glycosylation site, shown in
Fig. 4 (D).

To assess our prediction quantitatively, we calculated the solvent-excluded sur-
face (SES) area by MSMS 30). MSMS is a software which has been shown to
be fast and reliable in computing molecular surfaces. The SES is the topological
boundary of the union of all possible probes that do not overlap with the molecule
(Fig. 5) and is used to visualize and study molecular properties 30). The SES area
of each amido group of the asparagine which we predicted as glycosylation sites,
153th, 172th and 354th residues, is obviously larger than that of the amido group
of the asparagine which we predicted as a non-glycosylation site, 223rd residue
(Table 3). Here, even if the molecular dynamics simulations were performed, the
SES area of the amido group of the asparagine residue didn’t fluctuate signifi-
cantly (See Supplementary Material 3). The SES area of the glycosylated amido
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29 Support Vector Machine Prediction of N- and O-glycosylation Sites

Fig. 4 Local structure around N-glycosylation sites and non-glycosylation sites. The atoms
shown in green correspond to asparagine residues and atoms shown in blue illustrate
an amido group in the asparagine residue. (A) The local structure around the 153rd

residue in BACE1, which is predicted to be a glycosylation site. (B) The local structure
around a known glycosylation site in the training dataset. (C) The local structure
around the 223rd residue in BACE1, which is predicted to be a non-glycosylation site.
(D) The local structure around a known non-glycosylation site in the training dataset.

group was constantly larger than that of the non-glycosylated amido group.
We also applied the same evaluation approach to the O-glycosylation site pre-

diction. O-glycosylation sites of leptin precursor which is the causal factor of
adipositas were predicted 31). The molecular mechanism of O-glycosylation is

Fig. 5 The solvent-excluded surface (SES). SES is the topological boundary of the union of all
possible probes having no intersection with a set of overlapping spheres M. This surface
is used to not only describe hydration effects, but also to visualize protein surfaces and
to study molecular properties.

that a glycan moiety is attached to a serine or threonine residue by binding to
the hydroxyl group in the target residue.

Leptin precursor has twenty-two candidate sites of O-glycosylation. Among
these candidates, seven sites were predicted to be glycosylated (Supplementary
Material 1).

We analyzed the local structure around the predicted O-glycosylation sites
in leptin precursor (Fig. 6). The hydroxyl group of the 138th serine residue,
predicted as a glycosylation site, was shown in Fig. 6 (A). On the other hand,
the hydroxyl group of the 73rd serine residue, predicted as a non-glycosylation
site, was shown in Fig. 6 (B). As shown in Fig. 6, the hydroxyl group of the 138th

serine was spatially more suitable for an approach of glycosyltransferases than
that of the 73rd serine. SES areas of the hydroxyl group in the 7 predicted
glycosylation residues are significantly larger than those in the non-glycosylation
residues (P -value ¡ 0.02 by t test) (See Supplementary Material 2).

Therefore, we conclude that our model can predict structurally reasonable both
N- and O- glycosylation sites in proteins.

3. Discussion

Our model, which predicts glycosylation sites using not only local information,
but also general information and subcellular localization of proteins, showed bet-
ter prediction performances than previous models 14)–17), which only considered
local information (Table 1). These findings suggest that it is important to con-
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30 Support Vector Machine Prediction of N- and O-glycosylation Sites

Fig. 6 Local structure around O-glycosylation sites and non-glycosylation sites. The atoms
shown in green correspond to serine residues and atoms shown in purple illustrate a
hydroxyl group in the serine residue. (A) The local structure around the 117th residue
in leptin precursor, which is predicted to be a glycosylation site. (B) The local structure
around the 52nd residue in leptin precursor, which is predicted to be a non-glycosylation
site.

sider whole-protein-sequence information and subcellular localization when pre-
dicting glycosylation sites. Furthermore, in our computational experiment, in
which our model was applied to a protein whose glycosylation sites had not been
identified, glycosylation sites predicted by our model were shown to be struc-
turally reasonable (Fig. 4 and Fig. 6). Therefore, we conclude that our method
is a comprehensive and effective computational method that is applicable at a
genome-wide level.

4. Conclusions

In the present study, we developed a comprehensive and effective computational
method that detects glycosylation sites. Identification of the structure of glycans
attached to glycosylation sites is a challenge that follows the identification of
glycosylation sites. To resolve this problem, it is necessary to construct a com-
prehensive database, which contains information about glycosylation sites and
glycan structures at each glycosylation site. Identification of glycosylation sites
and protein-bound glycan structures will contribute to further understanding of
the functions of glycosylation and glycans that have not been fully elucidated.

Fig. 7 Schematic diagram of SVM separating positives (circles) and negatives (squares) in a
higher dimensional feature space. Hyperplanes (dotted lines) are determined so that
|w| , the Euclidean norm of weights for each dimension or feature, is minimized, or the
margin (2/|w|) is maximized.

Moreover, if we can overcome these problems, the field of glycoinformatics will
be established next to bioinformatics and chemoinformatics.

5. Methods

5.1 Support Vector Machine
SVM is a new technique for data classification that has better performance

than ANN 32). SVM has been used to solve a variety of biological classification
problems 33)–37).

The concept of SVM is based on the structural risk minimization principle to
minimize both training and generalization errors 38). When used for classifica-
tion, SVM separates positive (for example, glycosylation sites) and negative (for
example, non-glycosylation sites) training samples in a multidimensional space
by constructing a hyperplane optimally positioned between the positive and neg-
ative samples (Fig. 7). A testing sample is then projected onto this multidimen-
sional space to determine its class affiliation based on its relative position to the
hyperplane.

SVM produces the classifier shown in Equation (1). In SVM, each feature
vector xi is projected into a higher dimensional feature space using a kernel
function such as the RBF kernel, or K(xi, xj) in Eq. (1).
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f(x) = sign

(
n∑

i=1

yiλ
∗
i K(xi, x) + b∗

)
,

K(xi, xj) = exp
(
−‖xi − xj‖2

2σ2

) (1)

where λ∗
i is a Lagrange multiplier, b∗ is a parameter which is determined by the

hyperplane and σ is a parameter of RBF Kernel.
In this paper, we used the SVM software named LIBSVM 39) to perform the

prediction task. RBF kernel was selected as it showed the best performances (See
Supplementary Material 1). Kernel functions used were as follows,

Linear kernel : K(xi, xj) = xT
i xj

Polynomial kernel : K(xi, xj) =
(
γxT

i xj

)3
Sigmoid kernel : K(xi, xj) = tanh

(
γxT

i xj

)
5.2 Extraction of a Sequence Descriptor
5.2.1 Local Information
We encoded local information of glycosylation sites by extracting a subsequence

within a window of fixed size (Fig. 1). We extracted k upstream and down-
stream residues of Asn (N), Ser (S) or Thr (T) residues that were predicted
to be glycosylated. In this paper, we set k = 10, constituting the sequence
window of 20 residues (Fig. 1). In case the full sequence window cannot be
extracted, we define ‘Z’ as the 21st amino acid to fill blanks (Fig. 8). To en-
code one residue in the sequence window, we utilized the BLOSUM62 profile
encoding (the corresponding row in the BLOSUM62 matrix). For example, the

Fig. 8 ‘Z’ as the 21st amino acid. When the glycosylation site is near the ends of protein
sequence, the full sequence window cannot be extracted. In this situation, we define
‘Z’ as the 21st amino acid to fill blanks.

BLOSUM62 profile for alanine is equal to the vector (0,1,-1,-1,4,0,-1,-2,-1,-1,-2,-
1,-1,-1,-1,-1,-2,-2,-2,-3) and that for ‘Z’, the 21st amino acid, is equal to the vector
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0). Therefore, a 20×20 dimension vector was
calculated for each sequence window. In the previous study 40), BLOSUM encod-
ing, where each row in BLOSUM matrix was utilized to encode each amino acid,
was used to predict T-cell class 1 epitopes by neural network. In this study, the
prediction performance with this encoding was better than the other method.

5.2.2 General Information about Proteins
We counted the frequency of di-peptides in a whole protein sequence to encode

general protein information. Glycans are attached to proteins by glycosyltrans-
ferases, which interact with the target proteins. The interaction with the ob-
jective protein depends not only on the local site but also on the whole protein
structure. In order to consider the effects of glycosyltransferases, the structures
of proteins should be taken into account. In a previous study, it was shown
that protein structural classes can be predicted by counting the frequency of di-
peptides 41). Thus, we assume that counting the frequency of di-peptides enables
consideration of protein structures. As there are 20 amino acids and 20×20 kinds
of di-peptides, a 400-dimension vector was calculated for each protein.

5.2.3 Subcellular Localization Information about Proteins
We used the output of WoLF PSORT 26) to encode subcellular localization in-

formation. Proteins are synthesized in the ribosome and modified with glycans in
the endoplasmic reticulum or Golgi. The resultant glycoproteins are distributed
throughout cells. In particular, most membrane proteins are glycoproteins 24).
For example, the subcellular localization of glycoproteins and non-glycoproteins
in our datasets is shown in Fig. 9. As shown in Fig. 9, the subcellular localiza-
tion of glycoproteins is specific, as about half of all glycoproteins localize extra-
cellularly, while only 15% non-glycoproteins localize extracellularly. In WoLF
PSORT, localization of the target sequence is determined based on the localiza-
tion of training proteins that have sequence similarity with the target. To encode
subcellular localization information, we utilized the frequency of each subcellular
localization in the output of Wolf PSORT. The value for the subcellular localiza-
tion x is calculated as the number of proteins localizing in x divided by the total
number of proteins similar to the target. As there are 23 subcellular localizations
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Fig. 9 The frequency of each subcellular localization. Distribution of subcellular localiza-
tion prediction outputs of Wolf PSORT for glycoproteins and non-glycoproteins in our
datasets is illustrated. It should be noted that the prediction output of Wolf PSORT
is based on localization of proteins similar to a query and thus several localizations
where N-linked glycoproteins don’t exist, for example, are observed.

Fig. 10 Encoding the output of WoLF PSORT. In this example, WoLF PSORT exhibits that,
among 32 sequences similar to protein1, there are 25 proteins that localize extracellu-
larly (extra). Therefore, the 3rd element of the feature vector, which corresponds to
an extra localization, is 25/32 for protein1. The value for the subcellular localization
x is calculated as the number of proteins localizing in x divided by the total number
of proteins similar to the target. Here, extr stands for extracellular, lyso for lysosome,
plas for plasmalemma, nucl for nuclear, E.R. for endoplasmic reticulum.

in the output of WoLF PSORT, a 23-dimension vector was calculated for each
target protein (Fig. 10).

5.2.4 The Structure of the Feature Vector
To utilize all information (local information, general information and sub-

cellular localization information), the each vector was combined respectively
(Fig. 11). If a protein has more than one glycosylation sites, vectors derived
from protein whole sequence and subcellular localization information are identi-
cal for these sites. We use the combined vector as an input for LIBSVM.

5.3 Prediction Performance Assessment
The performance of SVM has often been assessed using the five-fold cross val-

idation method 42). The dataset was randomly divided into five subsets of ap-

Fig. 11 The structure of the feature vector. The each vector (vectors derived from local infor-
mation, general information or subcellular information) was combined respectively.
We use the combined vector as an input for LIBSVM.

proximately equal size. One of the five subsets was used as a test set, and the
remaining four subsets were used as training sets. This process was repeated five
times so that every subset was used as a test set once. The performance of SVM
can be assessed on the basis of accuracy, sensitivity, precision, MCC (Matthew’s
correlation coefficient) and AUC defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity=
TP

TP + FN

Precision =
TP

TP + FP

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Here, TP, TN, FP, FN stand for true positive, true negative, false positive
and false negative, respectively. MCC ranges between -1 and 1. If there is no
relationship between the predicted values and the real values, MCC should be
around 0. In contrast, there is strong relationship between the predicted values
and the real values, MCC should be close to 1. AUC represents the Area Under
the (ROC) Curve which draws the evolution of the true positive rate versus the
false positive rate. The AUC of an ideal classifier would be 1, while for a random
classifier it would be 0.5.

5.4 Dataset Construction
5.4.1 N-glycosylation Site Dataset
From the glycosciences.de database 43), we collected N-glycosylation sites in

human proteins that were validated in PDB database 44) as positives. As pu-
tative negative data, we randomly extracted 700 Asn residues attached no N-
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glycosylation annotation and with a consensus motif in the form of “Asn-Xaa-
Ser/Thr” (Xaa represents all kinds of amino acid except for proline) from the
glycoproteins which have some annotations about glycosylation (such as “Poten-
tial”, “Probable” and “By similarity”) in UniProtKB/Swiss-Prot. This extrac-
tion significantly reduces the possibility to unexpectedly pick up false negatives,
because in the glycoproteins with glycosylation annotation, every Asn residue site
must have been examined and therefore Asn residue site with no glycosylation
annotation is quite certainly true non-glycosylation site. The N-glycosylation
dataset consisted of 308 positives from 125 human proteins and 700 negatives
from 648 human proteins.

5.4.2 O-glycosylation Site Dataset
From the O-GLCBASE database 45), we collected O-glycosylation sites in mam-

malian proteins that were evidenced experimentally as positives. As putative neg-
ative data, we picked up the glycoproteins by choosing the proteins which have
some annotations about glycosylation (such as “Potential”, “Probable” and “By
similarity”) in UniProtKB/Swiss-Prot as mentioned above. From these limited
proteins, we randomly extracted 1200 Ser/Thr residues in mammalian sequences
with no annotation (such as “Potential”, “Probable” and “By similarity”) related
to O-glycosylation in UniProtKB/Swiss-Prot. Since the mucin protein sequence
has repeat sequences, several identical subsequences were generated within the
window. These identical subsequences were counted as one positive or one neg-
ative in the dataset. The O-glycosylation dataset was composed of 551 positives
from 242 mammalian proteins and 1200 negatives from 1160 mammalian proteins.

These N-glycosylation and O-glycosylation site dataset are available in our web
site (http://www.dna.bio.keio.ac.jp/glycan/).
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Supplementary Materials

( 1 ) Comparison with the performances by using other kernels.
Integral model was utilized and different kernels (RBF, linear, polynomial
and sigmoid) were applied in SVM computation.

( 2 ) O-glycosylation site prediction in leptin precursor.
Leptin precursor has twenty two candidate sites of O-glycosylation. Se-
quence windows around the candidate sites and the SES area of hydroxyl
group are shown as well as the prediction result.

( 3 ) Effect of conformational change on SES area.
The average SES area of both the glycosylated and non-glycosylated amido
group in several conformation of the endothelial protein C receptor precur-
sor (PDB ID: 1L8J) is shown. One nanosecond molecular dynamics simu-
lation was performed with AMBER 9 46), and the SES area was calculated
every 200 picoseconds.
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