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To reduce the processor energy consumption under low workload and low
clock frequency executions, a possible solution is to use ALU cascading while
keeping the supply voltage unchanged. This cascading scheme uses a single
cycle to execute multiple ALU instructions which have a data dependence re-
lationship between them and thus saves clock cycles for the whole execution.
Since the processor energy consumption is the product result of both power
and execution time, ALU cascading is expected to help energy optimization
for microprocessors operating under low frequency status. To implement ALU
cascading in a current superscalar processor, a specific instruction scheduler
is required to wakeup a pair of cascadable instructions simultaneously despite
there being a data dependence relationship between them. Furthermore, ALU
cascading is only applied under low clock frequency execution mode so that the
instruction scheduler must support standard scheduling for the normal clock fre-
quency execution. In this paper, we propose an instruction scheduling method
that enables the additional wakeup features for the utilization of ALU cascad-
ing without large hardware extensions. With this scheduler, the average IPC
improvement becomes 3.7% in SPECint2000 and 6.4% in Mediabench, as com-
pared to the baseline execution. The delay of additional hardware required for
the ALU cascading purpose is also evaluated to study the complexity of ALU
cascading.

1. Introduction

Nowadays, the design of microprocessors has entered a period when power and
thermal problems become major restrictions for the advancements of processor
performance. To relieve this problem, many mechanisms either in architecture
or circuit fields have been designed for the optimization of energy utilization. In
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Fig. 1 Extended clock cycle time under DVFS-like techniques.

recent years, Dynamic Voltage and Frequency Scaling (DVFS) as an architec-
ture level energy saving technique, has been widely studied and adopted in both
researches and industries.

As shown in Fig. 1 (a), in general pipeline processors, a combinational logic
takes a full clock cycle time to finish its operations. When the processor down-
scales the clock frequency, the combinational logic can finish operations prior
to the next clock pulse (Fig. 1 (b)). DVFS uses this idle period for a scaling of
the supply voltage which extends the operation time of the combinational logic
(Fig. 1 (c)). Since the supply voltage takes a quadric factor in power equation,
DVFS has great efficiencies in energy consumption reduction. However, concerns
also arise for the adoption of DVFS in future semiconductor process technology,
where the supply voltage scaling may be difficult because of process deviations,
noise margins, restrictions on the threshold voltage scaling caused by leakage
current, and so on. For these reasons, DVFS may not be as efficient in future
processors.

There is another idea which makes use of the idle part of the clock cycle time
shown in Fig. 1 (b). The idea is expressed as data collapsing 1) or ALU cascad-
ing 2)–4). Figure 2 (a) shows an example of cascaded ALU operations. Assume
that two arithmetic instructions i1 and i2 have a data dependence relationship.
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31 An Instruction Scheduler for Dynamic ALU Cascading Adoption

Fig. 2 ALU Cascading.

Supposing that the frequency is scaled to half of the maximum value, the proces-
sor can connect an output of an ALU to an input of another ALU and bypass the
result of i1 to i2. In the first half of the clock cycle time, the arithmetic of i1 is
executed in the left ALU. After the execution, the result of i1 is sent to both the
pipeline register and an input of the right ALU. In the latter half of the clock cy-
cle time, the arithmetic of i2 is executed in the right ALU. By this means, ALU
cascading can utilize the latter half of the clock cycle time for a second operation,
as shown in Fig. 2 (b). As the two instructions are now finished in a single cycle,
ALU cascading is expected to increase the Instructions Per Cycle (IPC) for the
program execution. Therefore, it may accelerate program execution, or provide
opportunities for further frequency scaling while keeping a given throughput.
Both of these two utilizations help achieve additional energy reductions for the
already decreased power consumption by the frequency downscaling.

There are several studies on ALU cascading utilizations in media processors and
vector processors. However, there are few researches on superscalar processors.
It is partly because of the complexity in appending new features for the cascaded
execution scheduling to the instruction scheduler in superscalar processors. The
difficulties may come from the following aspects.
( 1 ) Current schedulers are specialized to wakeup dependent instructions in the

instruction window in consecutive cycles.
( 2 ) The instruction scheduler is one of the bottlenecks for clock cycle time

scaling. Therefore, a large overhead introduced from additional features is
not acceptable.

( 3 ) The gains from ALU cascading are relatively insignificant so that the ad-
ditional hardware must be minimized, so as not to overwhelm the achieve-
ments.

( 4 ) ALU cascading is only applied in low frequency mode. The instruction
scheduler must support standard scheduling for the normal frequency exe-
cution.

In this paper, we propose an instruction scheduler which supports ALU cascad-
ing in view of the above problems. The proposed scheduler is based on the Depen-
dence Matrices Table (DMT) instruction scheduler 5)–7). To support scheduling
for ALU cascading, we extended the utilization of the dependence matrix ta-
ble, and added data path for cascading bypasses. Our scheduler in this paper
achieves a better performance than the prior instruction grouping method which
is another ALU cascading implementation, by exploiting more cascading oppor-
tunities, even with a smaller hardware cost. The delay of additional logics is also
evaluated in our research.

The rest of this paper is organized as follows. Section 2 introduces the DMT in-
struction scheduler as a baseline instruction scheduler of our proposal. Section 3
introduces the instruction grouping method which is a different implementation
of instruction scheduling method with ALU cascading. Section 4 describes our de-
signed instruction scheduler that supports ALU cascading. Section 5 presents the
evaluation results of IPC improvements after different ALU cascading scheduling
policies. A preliminary implementation of the circuit to execute cascaded in-
structions is given in Section 6, together with some overhead analyses. Section 7
shows some other related works. Finally, Section 8 concludes the paper.

2. Dependence Matrices Table (DMT) Based Instruction Schedul-
ing

In this section, we introduce the Dependence Matrices Table (DMT) instruction
scheduler 5)–7) which is the baseline instruction scheduler of our proposal.

2.1 Outline of DMT Structures
DMT was introduced as a high-speed instruction scheduling logics to accelerate

IPSJ Transactions on Advanced Computing Systems Vol. 2 No. 2 30–47 (July 2009) c© 2009 Information Processing Society of Japan



32 An Instruction Scheduler for Dynamic ALU Cascading Adoption

Fig. 3 DMT and its corresponding Register Mapping Table (RMT).

the wakeup-selection phase. Figure 3 shows the structures required by the DMT
instruction scheduler, working as an alternative to the conventional CAM based
instruction scheduling logics. The left part of Fig. 3 shows DMT structure. The
dependences between instructions are stored in a bottom-left WS ×WS matrix
structure �1, where WS is the actual instruction window size. DMT can be
implemented as a SRAM array in which each cell takes a 1-bit storage. The
row and column numbers denote the entry numbers of the instruction window.
Assume that the c-th instruction (consumer) depends on the result generated
by the p-th instruction (producer), where c and p are their positions in the
instruction window. The DMT element at row c and column p will be set to 1
accordingly, representing the dependence relationship and its direction as well.
As an example, an instruction i5 in the left of Fig. 3 has the dependences i1→ i5
and i2 → i5. To represent these dependences, the DMT elements at positions
(producer , consumer) as (1, 5) and (2, 5) will be flagged. Other flags in the figure
will be set similarly as shown in Fig. 3. Rows with no flags like i1 to i4 in Fig. 3
denote that the corresponding instructions have no unresolved dependences so
that they are marked as operand-ready.

Moreover, to update the DMT correctly, Register Mapping Table (RMT) which
is originally prepared for register renaming is extended to indicate the position of
the producer instruction. As shown in the right part of Fig. 3, Each RMT entry
represents the relationship between a logical register number and an assigned

�1 The up-right matrix structure is also used to support circular usage of instruction win-
dow (e.g., i1 again after imax ).

physical register number (Preg). The column “IW entry” is added to save a
pointer to the instruction that updates the Preg content. It is represented as
the entry index in the instruction window (IW). Considering the example shown
in Fig. 3, R5 entry shows that the 5th positioned instruction in IW updates
physical register p36, which is assigned to this logical register R5. A successive
instruction finds the positions of its producers by looking up this table with both
source logical register numbers.

2.2 Detailed Operations of DMT under Instruction Scheduling
The information stored in DMT is useful to trace the data dependence rela-

tionships, as well as the status of the resolved dependences. The operations of
DMT will be illustrated with a sample in this section. Assume that a 4-way out-
of-order superscalar processor is operating on the instruction series as in Fig. 4.
To help the introduction, we use a simple pipeline architecture which contains
Fetch, Decode, Issue, Execute, Writeback and Commit stages to illustrate the
DMT operations. Before the moment in Fig. 4 (a), the instructions prior to i1
have been executed. Suppose that we are under an initial status that i1 to i4
are decoded and stored in the IW. The DMT and RMT now represent the infor-
mation of these four instructions. At this point, no DMT elements are flagged
since the four load instructions are assumed to depend on issued instructions.
The operating status related to DMT and RMT in the next cycle will conform
to the following steps.

(1) Decoding of block from i5 to i8
Consider that the four instructions from i5 to i8 enter the decode phase at

the same cycle. To set flags of DMT appropriately, the processor has to detect
the IW entry number of the producer instructions for the two source operands
in each decoding instruction. In the decode stage, this operation is done with
two micro-actions. Firstly, dependences between the simultaneously decoded
instructions are checked by comparing their source logical register numbers with
destination logical register numbers. Secondly, source logical register numbers
are used to lookup RMT and get their corresponding contents in “IW entry”.
To reduce delay, those two actions can be done simultaneously. In the event that
multiple results are retrieved for a single source operand, the logics will choose
the information of the latest producer.
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Fig. 4 Instruction scheduling based on DMT.

We use instructions i5 and i6 as the example. Under the first dependence
check action, the processor compares two source logical register numbers of i6
(R5 and R3) with the destination logical register number of i5 (R5). As a result,
the processor detects that the left source operand of i6 has a dependence to
i5. Also under the second step, the processor looks up RMT with source logical
register numbers R1, R2, R5, and R3. After these lookups, the logic detects their
dependences on i1, i2, and i3, respectively. By putting priority on the first action,

the dependence of i6’s left source operand will be set to i5. All these dependences
detected by either comparisons or RMT lookups, will then be translated to the
DMT element indices as (1, 5), (2, 5), (3, 6), and (5, 6). They will be stored in
the matrix by putting flags in those memory cells. The row vectors of i7 and i8
in the DMT are constructed by the same process as shown in Fig. 4 (b).

Meanwhile, information for destination registers related to i5 to i8 (allocated
physical register number and IW entry) will be updated into RMT entries accord-
ingly. The dashed lines and ellipses in Fig. 4 (b) demonstrate these information
updates in the decode cycle of this instruction block.

(2) Wakeup/select after the issue of block from i1 to i4
Assume that the four load instructions (from i1 to i4) have been selected and

passed to the execution phase simultaneously. The wakeup operation after the
issue of these four instructions is done by clearing the DMT columns indexed
by the entries of issued instructions. As a result, the dependences to the issued
instructions are now marked as resolved or none in the updated DMT. The
clearing operation is demonstrated as the dashed crossing in Fig. 4 (c). After this
clearing operation, the columns which have been cleared are forced to be zero
even if a newly decoded instruction tries to set the flag.

After the clearing actions, the vector of row 5 in the DMT structure has been
totally cleared and vector bit OR result becomes 0. It indicates an operand-ready
status for the corresponding instruction i5. At this point, the other row vectors
still have flagged bits and cannot be marked as operand-ready.

In the select phase, i5 will be a candidate for issue, taking a data forwarding
path from the execution stages of both i1 and i2 to accelerate the program
execution. In a following cycle, the issue of i5 will clear DMT column 5 and thus
i6 and i7 become operand-ready.

By these DMT manipulations, the instruction scheduler can wakeup all the
consumer instructions when the producer is about to execute.

3. ALU Cascading Adoption with Instruction Grouping Method

There is a similar research which added features into the instruction scheduler
to achieve ALU cascading 8). In that paper, they gave a specialized instruction
window (IW), as shown in the right part of Fig. 5. Each entry of the modified
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Fig. 5 Outline of Instruction Grouping Method.

IW now contains two slots, known as the master and slave. With these two slots,
they could group a producer instruction p and a consumer instruction c which has
no unresolved dependence other than p, into a package. The instruction package
is then fitted into the master and slave slots in one instruction entry. The wakeup
of the master slot will also wake the consumer instruction in the corresponding
slave slot. As an example, i1 and i2 in the sample code in Fig. 5 will be put into
one entry since they satisfy the grouping conditions.

If the processor uses the slave slot for the purpose of ALU cascading only,
the utilization is limited by the rate of cascadable instructions and will not be
high. Assume that data dependences to registers R11, R12, R15 and R13 in the
example have already been resolved when i5 and i6 enter the decode stage. In
this case, the processor can apply a VLIW-like grouping like i5 and i6 in Fig. 5
which have no unresolved dependences to improve the slave slot usage. Moreover,
a feature that swaps the master and slave slots in the latter half part of the IW
(as in Fig. 5) has been employed to balance the read/write port usage of left/right
slots.

This method gives additional performance improvements from both the cas-
caded operations and increased in-flight instructions from slave slots utilization.
However, there are still some restrictions in this method.
• ALU cascading is only applied to a single producer/consumer pair despite

whether or not there are any other consumer candidates.
• Only one unresolved dependence is allowed in the consumer before it can be

grouped into the cascaded pair in decode stage.
• The total read/write ports are distributed equally to the left/right slots to

use both slots, as in Fig. 5. This organization gives additional restrictions in
the instruction issue (e.g. if ready instructions are concentrated in the left
slots, the processor can only utilize half of the total issue width.).

• Additional costs will be introduced to implement the slave slots.
Our proposal in Section 4 relieves all the above restrictions by using an exten-

sion on the DMT instruction scheduler without touching the instruction window.
However, as both methods give ALU cascading implementations, the comparison
results of this grouping method and our proposal will be studied in Section 5.

4. Dynamic Instruction Scheduling with ALU Cascading Based on
Extended DMT

Based on the background technology introduced in Section 2, we designed an
instruction scheduling scheme using ALU cascading. As in the instruction series
shown in Fig. 4, the destination operand of i5 serves the left source operand for
either i6 or i7. If the right source operand for i6 or i7 has already been resolved,
the processor can apply ALU cascading as i5→ i6 or i5→ i7. However, to issue
i6 or i7 at the same cycle of i5’s issue, the operand-ready marks of i6 and i7 are
required to be set one hop prior—at the same point when the source operands of
i5 are ready. For this purpose, we modified the DMT method to support ALU
cascading.

4.1 Modified DMT Operating Scheme to Support ALU Cascading
We use the same instruction series as in Fig. 4 to illustrate the differences in

the instruction scheduling, with the wakeup supports for the ALU cascading.
Similarly like Section 2.2, the initial status of the table structures used in the
new scheduler is the same as Fig. 4 (a).

(1) Decoding of instruction block from i5 to i8
Though the hardware structures of DMT and RMT are not changed in the de-

sign, we included some modifications in the DMT flag setting part to support the
wakeup of cascadable instructions. The main idea is to replace the dependent bit
of a consumer instruction from its direct producer to the two-hop away produc-
ers (as shown in Fig. 6 (a)). Thus, from the grandparent producer instruction’s
viewpoint, its selection can wakeup both its direct consumer and two-hop away
consumers by a single clearing action. To achieve this, the dependent check logics
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Fig. 6 Modified DMT based scheduling with ALU cascading.

are modified to perform one more iteration of producer back-tracing. Similarly
as in the introduction of DMT, we use instruction block from i5 to i8 to describe
the actual actions performed in this decode stage.

I) Read access of RMT
As in Section 2.2, source logical register numbers are used to lookup RMT.

For instruction i5 to i8, the processor can establish the direct producer/consum-
er relationships i1→ i5, i2→ i5, i3→ i6, and i4→ i7 by this lookup.

II) Detecting the two-hop away producer/consumer chain
At the same time as the RMT lookups, dependence checks are performed be-

tween the instructions that decoded simultaneously. In detail, the source and
destination logical register numbers of instructions from i5 to i8 will be com-
pared. By this comparison result, the processor can find the i5 → i6, i5 → i7,
and i6 → i8 dependences. By combining this detection and I), we can achieve

back-trace to the two-hop away producer instructions. For example, with the
detection of i5 → i6 from this source and destination register numbers com-
parison and the detection of i1 → i5 and i2 → i5 dependences from the RMT
lookup in the same decode phase, the vision of two-hop dependence chains of
both i1→ i5→ i6 and i2→ i5→ i6 can be established.

III) Updating DMT according to two-hop away producers
Based on II)’s result, together with the knowledge that i5 and i6 are both

ALU operations, we can set them as a candidate pair for the ALU cascading.
Under this situation, the two-hop away providers are used to wakeup the left
source operand of i6. If i6’s right source operand can be ready no later than
i5’s wakeup, i6 can be woken up at the same time as i5. Specifically, for the
constructing of i6’s left source operand related DMT row vector, we designed
a logic that follows these steps: 1) The usual scheduling bit vector for i6’s left
source is “00001000” according to the direct dependence detected in II); 2) i5
is in the same decode phase and the result from I) will give its dependence bit
vector as “11000000” for its source operands R1 and R2; 3) choose the pro-
ducer i5’s dependence bit vector by using 1)’s result as a selection information.
By these steps, the dependence vector for i6’s left source operand has been up-
dated to its producer’s, as “11000000”. The DMT elements at the positions of
(producer , consumer) as (1, 6) and (2, 6) will be flagged, instead of (5, 6) which is
used in the original DMT design (The dashed arrow in DMT row 6 in Fig. 6 (a)
demonstrates this modification).

We can also detect that i5 and i7 are candidates for the ALU cascading, fol-
lowing a similar process. The DMT element (1, 7) and (2, 7) will be flagged
accordingly.

IV) Other DMT updates
For source operands without the two-hop away producer information, the direct

producers will be used to update DMT. In this example, DMT cells at positions
(1, 5), (2, 5), (3, 6), (4, 7), and (6, 8) are updated under the conventional scheme.

By using these four steps, DMT element can now be used to indicate the
relationship between the two-hop away producers and the consumer instructions.
Studying the process from the producer’s viewpoint, the column vector of i1
now contains its nearest indirect consumers’ information, which can be used for
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wakeup/selection in latter cycles.
(2) Wakeup-select stage after the issue from i1 to i4 block
After the selection of the four instructions from i1 to i4, the issue logic will clear

their corresponding DMT columns, as Fig. 6 (b) shows. As a consequence, i5, i6
and i7 will be marked as operand-ready since the newly updated DMT indicates
all the three corresponding row vectors are without unresolved dependence flags.

With sufficient ALU resources, i5 → i6 and i5 → i7 chains can be filled into
the cascaded ALUs path. Here, i5 serves as the same producer for both i6 and i7.
We call it 1-to-N ALU cascading. The detailed execution after issue is described
in Section 6.1.

If the ALU resources are insufficient for the cascading purpose, issuing all
ready instructions is not possible. The execution will fall back to the conven-
tional scheme automatically by setting priority on older instructions as the usual
instruction scheduling. For example, if there is only one free ALU at the Fig. 6 (b)
situation, only i5 will be selected and issued. i6 and i7 will be issued in following
cycles and there’s no difference compared to the usual execution. By applying
priority to older instructions, we don’t have to add an additional arbiter which
prevents the consumer running ahead of the producer.

For this requirement, it is better to use the oldest-first selection policy 9) in
implementing the selection logic. Considering another popular selection policy
which is based on location 10), it will always grant the leftmost instruction window
entry with the highest priority. It will fail when above cascadable chain i5→ i6
crosses the instruction window boundary, back to top, especially under a shortage
of free ALU resources. Nevertheless, as indicated in paper 10), the location-based
selection logic can also be used to implement the oldest-first policy by applying
instruction window left compacting. Or we can add specific rules to prevent above
i6’s selection prior to i5. These supplemental schemes may help our instruction
scheduler to work with a location-based selection policy. However, they come
with the cost of performance degradation so that oldest-first selection is assumed
in this research.

4.2 Extension to Support Cascading among Distant Instructions
We use distant instructions here to refer the instructions beyond a simultaneous

decode stage. Considering the detection of two-hop away producer information

Fig. 7 Extended RMT to support ALU cascading among distant instructions.

from RMT in one single lookup, ALU cascading between the instructions inside
the whole instruction window can be possible. Figure 7 presents the extended
RMT (eRMT) to achieve this idea. In this figure, values of “src L/R IW entry”
are appended to save the information of two parent instructions of the instruction
in “IW entry”. “ALU inst. flag” is added to denote whether the instruction in
“IW entry” is of ALU operation or not. The constructing of eRMT line will
follow the dashed circles and arrows in Fig. 7.

Assume that instructions i5 and i6 are decoded in separate cycles. When i6 is
under decoding, lookups of eRMT will be done by using its two source operands.
As for right source operand R3, no difference will arise as compared to Fig. 6 (a).
For the left operand R5, both i5 and i1, i2 will be returned, as the direct producer
and the parents of direct producer i5. And since the “ALU inst. flag” bit in the
R5 row is 1, the cascadable pair of i5 → i6 can be determined. DMT elements
of (1, 6), (2, 6), and (3, 6) will then be flagged, which is the same as Fig. 6 (a).

For each instruction, the eRMT update is performed in the following steps:
(1) Read the two producers’ information in eRMT with the source logical reg-
ister numbers; (2) Write allocated physical register number, IW entry, and the
producers’ IW entry from (1) into the eRMT entry (in Fig. 7) indexed by the
destination logic register. These steps may trigger a read-after-write operation
if the producer of this instruction is in the same renaming phase. However, as
the usual renaming also covers the read-after-write operation like in instruction
R3← R3 + R4, the eRMT update will not extend the renaming delay.

By utilizing this extended RMT, the processor can establish the two-hop pro-
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ducer/consumer chain like i1→ i5→ i6 by a single eRMT lookup even if i5 and i6
are in different decode phases. However, this extension doubles the area of RMT
which is frequently accessed. Using CACTI 4.2 11) tool set to give an evaluation,
we found that the energy consumption penalty caused by the increased area is
in the same order as the possible savings from the improved performance. For
these reasons, we limit the utilization of ALU cascading inside the simultaneously
decoded instructions. As shown in Section 5.2, ALU cascading is still effective
even if we prohibit the cascading between distant instructions. Also, Section A.1
gives a study of the distribution of the distance between cascaded instructions
detected with this eRMT structure. It may help define the suitable cascading
opportunity search range.

5. Performance Simulation Results

As introduced in Section 1, our goal is to enhance current low energy tech-
niques by employing the previously proposed idea of ALU cascading. According
to its working scheme, ALU cascading can save execution time by the cascaded
executions in Fig. 2 under a halved operating frequency. Since the cascading
does not require voltage scaling, the performance improvements can be applied
orthogonally to other energy saving methods that work under a down-scaled fre-
quency. As energy is the product of both averaged power and the total execution
time, if the utilization of ALU cascading can improve performance without large
hardware extensions, the final energy amount can be reduced. Therefore, we use
performance margin to study the effectiveness of our instruction scheduler which
supports cascading scheduling. In this section, we evaluate possible performance
improvements—measured by IPC—by executing a series of benchmarks in the
employed simulation environment.

5.1 Simulation Methodology
We used a detailed cycle-accurate out-of-order execution simulator—

SimpleScalar Tool Set 13) to measure the possible IPC improvements by the ALU
cascading method. Table 1 lists the configuration information of the baseline
processor with an assumed 12-stage pipeline, as shown in Fig. 8. In the simu-
lation, we assumed a separate load/store architecture that divides the operation
of memory instruction into address generation and memory access internal in-

Table 1 Baseline processor configuration.

Processor 8-way out-of-order issue,
64-entry RUU, 32-entry LSQ,
8 int ALU, 4 int mult/div,
8 fp ALU, 4 fp mult/div,
8 memory ports

Branch prediction 10 K-entry bimode 12)

(4 K-entry x2 direction PHT,
2 K-entry choice PHT,
12-bit history),
2 K-entry BTB, 16-entry RAS,
10-cycle misprediction penalty

L1 I-cache 64 KB/32 B line/2-way
L1 D-cache 64 KB/32 B line/2-way

L2 unified cache 2 MB/64 B line/4-way
Memory 64 cycles first hit,

2 cycles burst interval
TLB 16-entry I-TLB,

32-entry D-TLB,
80 cycles miss latency

Fig. 8 The assumed 12-stage processor pipeline.

structions. Thus, ALU cascading can be applied on both ALU operation instruc-
tions (SHIFTs are also included) and address generation instructions derived
from memory accesses.

Table 2 lists the benchmarks which we used for evaluation. We chose eight
benchmarks from SPECint2000, compiled with gcc Ver. 2.7.2.3 for SimpleScalar
PISA. Also, six benchmarks from Mediabench 14) are selected, excluding those
too short programs (less than 50 M instructions). The Mediabench programs are
executed from beginning to end. For each SPECint2000 benchmark, 1.5 billion
instructions are simulated with skipping first 1 billion instructions.

5.2 Performance Improvements
The IPCs of the processor without ALU cascading adoption are collected from

the simulation results as a baseline performance measurement, which are listed
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Table 2 Benchmark programs.

benchmark baseline IPC
bzip2 3.57
gcc 2.14
gzip 1.77
mcf 0.48

SPECint2000
parser 1.56

perlbmk 1.72
vortex 3.14
vpr 1.50

G721 decode 2.30
G721 encode 2.00
GSM decode 3.10

Mediabench
GSM encode 3.85

MPEG2 decode 2.92
MPEG2 encode 1.43

Fig. 9 Normalized IPC improvements after ALU cascading adoption.

in Table 2. All IPC results of other executions are normalized to these values.
Figure 9 shows the IPC improvements by using different instruction schedul-
ing methods for the ALU cascading purpose. In Fig. 9, the vertical axis gives
the normalized IPC improvements and the horizontal axis shows three bars of
different scheduling policies in each benchmark. The middle bar of each bench-
mark depicts the IPC improvement with our proposed instruction scheduler that
supports ALU cascading among simultaneously decoded instructions. For com-
parison, the prior instruction grouping method (Section 3) and the method of
the extreme ALU cascading within the whole instruction window (Section 4.2)
are also demonstrated in Fig. 9, as the left and right bars in each benchmark.
Note that the instruction grouping method uses an extended dual-slot instruc-

tion window of 64 entries, so that a maximum of 128 instruction slots can be
used simultaneously.

The results of the left bars show that the average IPC improvement becomes
2.5% in SPECint2000 and 4.3% in Mediabench with the grouping method. Be-
cause of the issue of port restriction described in paper 8), it slightly degrades
performance in some high IPC benchmark such as vortex. But it achieves higher
improvements compared to our proposal in benchmarks mcf and vpr because it
can utilize a maximum of twice as many instructions with a dual-slot instruction
window.

With cascading among simultaneously decoded instructions which is our ma-
jor design introduced in Section 4, the average IPC improvement becomes 3.7%
in SPECint2000 and 6.4% in Mediabench, respectively. Our proposal achieved
higher average improvements compared to the grouping method even with a
smaller instruction window area. In the extreme ALU cascading utilization
which applies ALU cascading in the whole instruction window, the broadened
cascadable instructions choice provides further performance improvement oppor-
tunities. The average improvement becomes 4.8% in SPECint2000 and 7.5% in
Mediabench. Studying these values, the improvement ratio in SPECint2000 from
middle bar to right bar is larger than in Mediabench, indicating that it might
be beneficial to broaden the cascadable instruction searching range. However,
compared to the large additional hardware required to implement the extreme
ALU cascading, the improvement from the middle to the right bar is relatively
insignificant, as per the cost effective consideration. Therefore, ALU cascading
among simultaneously decoded instructions is used in our research.

Figure 10 shows the cascading ratios in each scheduling policy. The horizon-
tal axis is the same as in Fig. 9 and the vertical axis now depicts the cascaded
ratios. In the figure, the blank bars denote the percentage of ALU instruc-
tions in each program execution. After adding address generation instructions
to ALU cascading candidates, 50–70% instructions become ALU-like operations,
suitable for cascading. The gray bars are the ratios of instructions which are
actually cascaded into a latter half of clock cycle execution, after applying the
three instruction scheduling methods. As shown in the figure, ALU cascading is
comparatively easy in Mediabench, which is also reflected by the larger IPC im-
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Fig. 10 Ratio of instruction which is executed as a latter instruction of ALU cascading.

provements from Fig. 9. Also, comparing the left and the middle bars in Fig. 10,
we can see that our ALU cascading among the simultaneously decoded instruc-
tions exploits more cascading opportunities than the grouping method. This is
because in the grouping method, only one unresolved dependence is permitted
in the consumer instruction before it can be packed with its producer for the
cascaded execution. The black bar in each benchmark denotes the percentage
of instructions which are executed as consumer instructions in 1-to-N cascading.
Note that the grouping method only allows cascading between one producer and
one consumer so that there are no 1-to-N cascading results. Different to the gray
bars, the adoption of 1-to-N cascading is more frequent in SPECint2000. It gives
a vision that SPECint2000 has more complex data dependences, as compared to
Mediabench.

However, as shown from Fig. 9 and Fig. 10, there is a weak correlation between
IPC improvement and cascaded ratio. By additional analyses, we found that
the gain from ALU cascading can be easily overwhelmed if the benchmark ex-
periences many pipeline hazards. For example, the IPC improvement of mcf
by cascading is trivial compared to the other benchmarks despite the fact that
there is only a small difference in the cascading ratios. The reason is that the
processor throughput of mcf is greatly limited by its high cache miss rate char-
acteristics. One main memory access caused by a cache miss may introduce an
80-cycle pipeline hazard. Since the gain from an ALU cascading is only 1 cy-
cle, if the saved cycles from cascaded executions overlap with the long pipeline
hazard, the effectiveness of ALU cascading is concealed. Therefore, ALU cascad-
ing will become more apparent if combined with other pipeline hazard reducing

technologies. If a perfect cache is assumed, the IPC improvement of mcf be-
comes 3.7%, which is of a similar level as the other benchmarks. Furthermore, if
we assume a more ideal processor (perfect caches, perfect branch predictions, a
1024-entry instruction window and a 128-way superscalar processor), the effec-
tiveness of ALU cascading becomes much larger than in Fig. 9. The improvement
is 28.4% for SPECint2000 and 33.8% for Mediabench, averaged from the eval-
uated benchmarks. Detailed results after applying idealized environments are
listed in Section A.2.

If the processor employs a narrower decode width compared to the baseline
processor in Table 1, the IPC improvement and the cascaded ratio in the middle
bar may become smaller because of the reduced cascading candidate searching
range. In such cases, we can implement a decoded result buffer which holds
the decode result of a prior cycle to compare with a current decode result. By
implementing this buffer, we can obtain a doubled comparison width to detect
more cascading opportunities. The influences from changing the decode/issue
width are briefly studied in Section A.3.

6. Preliminary Implementation and Overhead Estimation

Previous sections have introduced the proposed DMT-based instruction sched-
uler with ALU cascading supports in detail. The designed wakeup/selection in
the scheduling method can help issue the dependent ALU instructions like i5→ i6
in Fig. 4 in the same cycle. However, we have to prepare additional logics and
data paths for the execution of cascaded instructions. This section introduces
an implementation candidate of the execution stage that supports cascaded exe-
cutions. Based on the implementation, the overhead introduced from the added
circuits are preliminarily studied.

6.1 Execution Stage with ALU Cascading
After the issue stage, there is no data dependence information among instruc-

tions. The execution logics must detect the cascadable pair itself. This step is
very similar to the conventional result forwarding, because usual execution log-
ics also need to find out the data dependences between current instruction and
instructions in latter stages to choose the proper forwarding path. Therefore,
comparators are required to detect the dependences from both instructions in
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Fig. 11 An example of bypassing conflicts, without specific cascading bypasses.

latter stages and instructions in the same stage, for the purpose of correct source
operand selection among both result buses and cascading paths.

Meanwhile, to execute cascadable chain i5 → i6 (as shown in Fig. 6) in the
same cycle, a cascading connection between i5’s ALU output to i6’s ALU input
is required. Basically, this cascading connection may be achieved by adding
a bypass to the pipeline register after i5’s ALU output, and making use of a
bypass network which is originally for data forwarding between different stages.
However, it is possible that the bypass route may be simultaneously occupied
to forward data from the last to the current execution cycle. As an example,
Fig. 11 uses a simple program block from instruction i10 to i12 to illustrate
this conflict. Specifically, the execution stage units including the ALU and the
pipeline register (denoted as dvalue) after it are shown in the figure. Assume that
only i10 is executed in clock cycle n due to the resource limitation, as shown in
Fig. 11 (a). Studying the program block, the producer/consumer pair i11 → i12
can form a cascadable chain. Under the condition of Fig. 11 (a), if no specific
cascading bypasses are used, it is impossible to use a single data bypassing route
to provide the two input data to the ALU that executes i12 in cycle n + 1, as
depicted in Fig. 11 (b). The cascaded execution of i11 → i12 will thus fail. To

avoid the conflict on that bypass, an arbitration is required to keep correct data
passing. The arbitration complicates the design and may also extend the critical
path. In view of this consideration, we use specific cascading bypasses in this
implementation without violating original forwarding bypasses.

Figure 12 illustrates the organization of register fetch (RF) stage and execu-
tion (EX) stage, which has included additional bypassing routes and comparators
for ALU cascading. The shaded parts denote newly added hardware to support
ALU cascading. These hardware units are separated into comparators, bypassing
routes, and multiplexers. The two thick dashed lines (marked as (1) and (2) in
Fig. 12) which pass through multiple blocks are the data paths of either cascad-
ing or forwarding. The delay of these two paths will be evaluated in Section 6.2.
Latches known as pipeline registers are placed between stages. In general, op rep-
resents the operation code. dtag is the destination register number and stagL/R
stands for the two source register numbers. All the registers here refer to the
physical ones. valueL/R and imm show values which are read from the register
file or given as an immediate value. The latches fselL/R and shaded cselL/R
are control signals for the multiplexers that determine the selection of source
operands. fselL/R saves the information if the source operand can come from
the result forwarding, and cselL/R contains the information if the source can be
provided from ALU cascading. These signals are created by comparators in RF
stage. dvalue is the produced output of the ALU logics and will be committed
into the destination register in the latter writeback phase.

In usual processors, there are no shaded parts and the logic only considers
whether the source operand arrives from the register file or one of the dvalue
latches. The value of fselL/R is given by the comparison result of stagL/R and
dtag in the latter pipeline stages.

The cascaded execution will be achieved by using the following hardware units.
Firstly, we added comparators for cselL/R creation, which compare the dtag and
stag of instructions in the same stage. Secondly, we present an additional bypass
network from the outputs of the ALU to the multiplexer which selects the source
operand. To reduce additional delay from the load capacitance, we prepare sig-
nal drivers to the input of additional bypass network. Thirdly, we prepare two
more multiplexers, together with the original forwarding data selection multi-
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Fig. 12 Register fetch (RF) stage and execution (EX) stage with bypassing routes for ALU cascading.

plexer denoted as Fwd .Mux , to construct a two-level hierarchy before each ALU
input. The three multiplexers can provide an appropriate selection for the source
operand, either from the register file, data forwarding, or the other ALU output.

The added hardware units introduce some delay penalty for EX stage because
the additional load for ALU output and the new multiplexers are on the critical
path. The evaluation result of the critical path extension is shown in the next
section.

6.2 Delay Overhead in the Execution Stage
In this section, we show an estimation result of the delay overhead in the

execution stage with the additional logic units for ALU cascading. We designed
the circuit listed in Fig. 12 with Verilog HDL. For comparison, original execution
logic with only one multiplexer hierarchy before the ALU was also studied. Since

ALU cascading in this paper is only applicable for ALU operations with short
delays, the ALU used in the logic design was limited to have the functions of
NOT, AND, OR, XOR, ADD, SUB and SHIFTs �1. The data of ALU operations
were set to be 32-bit. We evaluated the delay with 8 ALUs and data paths which
fully support result forwarding and ALU cascading between all ALUs. Above
logics were synthesized with Synopsis Design Compiler under Rohm 0.18 µm

cell library. Note that current implementation and overhead studies are still at
preliminary stages. Wire delay is not considered in the following estimation.
Detailed circuit level designs including wire delay consideration and influences
from miniaturized process technology will be one of our major future tasks.

�1 SHIFT operations include SHIFT left, arithmetic and logical SHIFT right, and ROTATE.
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Table 3 Delay of units in execution stage.

Delay (FO4)
Unit

w/o cascading w cascading
Bypass before ALU 2.91 3.42

32-bit ALU cell 18.83 18.83
Pipeline register 3.69 3.69

Total 25.43 25.94
Normalization 100% 102.0%

Table 3 lists the delay results of the major units in the execution stage under
non ALU cascading execution. The latency of each unit is expressed in fan-out-
of-four (FO4) inverter delays. Columns 2 and 3 are the delay results without
and with ALU cascading logic units, respectively. We divided the data path
(as the rough dashed line “(2)” in Fig. 12) in each execution stages into three
parts: the result forwarding starts from the pipeline register to the ALU input,
the ALU circuit, and the data committing from ALU output into the pipeline
register �1. Since ALU and pipeline register remain unmodified whether there is
support for ALU cascading or not, the only difference is the bypass route before
each ALU, which is either of one-level or two-level multiplexer hierarchy. The
delay in Table 3 shows that the two-level multiplexer hierarchy increases a 0.51
FO4 inverter delay for the bypass before each ALU input. However, since the
major delay of the execution stage comes from the ALU operations which are not
affected by cascading logics, the overhead from two-level multiplexor hierarchies
is lessened. The total delay increase for one execution stage is about 2.0%. This
increase is expected to be smaller if more complicated ALU operations are used in
the real system. Moreover, if this increase can be concealed by the other critical
paths, the clock frequency will not be influenced and ALU cascading becomes
implementable in that processor.

It is expected that under a current or a future process technology, the wire
delay will contribute more to the critical path in the execution stage. As a
result, the ratio from the delay of cascading bypass may also have an increasing
tendency. However, the major part of the cascading bypass works in parallel

�1 Strictly speaking, the latch overhead of the pipeline register includes the setup and hold
delays for the latch unit that cross the clock edge. For simplicity, these two delays are
calculated as a whole.

Table 4 Delay of ALU cascading execution.

Unit Delay (FO4)
Bypass before ALU 1 3.42

32-bit ALU cell 1 18.83
Bypass before ALU 2 3.42

32-bit ALU cell 2 18.83
Pipeline register 3.69

Total 48.19

to the traditional bypass for data forwarding. If the data forwarding bypass is
applicable, the cascading bypass can be similarly implemented.

Table 4 lists the delay of an ALU cascading execution which includes two
dependent ALU subtraction operations. The data path is illustrated as the finer
dashed line “(1)” in Fig. 12. Supposing that all the prerequisites are fulfilled
for the ALU cascading execution, the critical path of the execution stage will
start from the result forwarding after the pipeline register, running through two
cascaded ALUs via the proper bypassing route, and committing into the pipeline
registers. Here, only one latch overhead of the pipeline register is included in
the critical path of the ALU cascading. The total delay for the two subtraction
operations is 48.19 FO4 inverter delays. This delay is slightly smaller than twice
of the clock cycle indicated in Table 3. Therefore, the cascaded execution can be
safely finished in half of the frequency, which fits in with our target environment
that ALU cascading is applicable under the half of the maximum clock frequency.

7. Related Works

There are some researches on ALU cascading adoptions in the processors ex-
cluding dynamic cascading employment for out-of-order issue superscalar proces-
sors. There is an adoption example for asynchronous superscalar processor 15),16).
The processor issues several instructions which are fetched simultaneously with-
out considering data dependences. To resolve the data dependence, the execution
stage of the processor checks data dependence and connects an output of ALU
into an input of the other ALU. The cycle time of the execution stage is automat-
ically extended because of asynchronous operation. The performance potential
of data collapsing, which is a similar idea of ALU cascading, was studied in a
superscalar processor based on SPARC V.8 architecture in paper 1). In that
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research, the collapsing opportunities were ideally utilized based on tracing data
while the dynamic scheduling method was not presented. Also, there is a proposal
to adopt ALU cascading to usual superscalar processor 4),17). However, detailed
instruction scheduling for cascading is not presented.

Researches were carried out in papers 18) and 19) to combine multiple short-
delay instructions which may contain true dependences into Macro-OPs (MOP).
These schemes illustrate large similarities to the ALU cascading implementation
in paper 8), which has been introduced in Section 3. They may have similar
problems due to the fixed grouping feature after decoding.

Mini-graph 20),21) and instruction subgraph 22) give ideas to shorten critical
paths in programs by grouping instructions with dependences based on sub-
graphs. Compiler supports are required to delineate the subgraphs.

ALU cascading is only adopted under low clock frequency without supply volt-
age scaling. There are ideas which utilize low clock frequency operation without
supply voltage scaling, which are known as dynamic pipeline scaling 23), pipeline
stage unification or PSU 24),25), or adaptive pipeline depth control 26). Those ideas
shrink pipeline depth by merging pipeline stages under low clock frequency with-
out the supply voltage scaling. There is a research which proposes to adopt ALU
cascading under PSU adoption 27). They showed that the effectiveness of PSU
could be improved by adding ALU cascading adoption.

There is a proposal which utilizes ALU cascading to alleviate circuit delay
variations from process variations 28). In that research, they designed methods to
compensate performance degradation from variations by ALU cascading, because
the deep logic depth usually provides more tolerance for variations.

8. Conclusions

In this paper, we proposed an instruction scheduler for ALU cascading. The de-
signed scheduler can issue producer and consumer instructions simultaneously to
achieve ALU cascading in the execution stage. We evaluated the scheduler with
SPECint2000 and Mediabench benchmarks. On average, the proposed instruc-
tion scheduler achieves a 3.7% and a 6.4% IPC improvement by ALU cascading
executions, respectively. It outperforms a prior ALU cascading implementation
which uses instruction grouping, by making use of more cascading opportunities

even with a smaller hardware cost. Since the energy consumption of the processor
is represented by the product result of power and execution time, the IPC im-
provements will lead to energy reductions if the power overhead from additional
hardware is controlled under an acceptable level.

We also evaluated the logic delay caused by additional hardware based on a
preliminary implementation. The evaluation result indicates that ALU cascading
extends the critical path of the execution stage by 2.0%. If this extension can be
concealed by the other critical paths, ALU cascading becomes effective. Detailed
circuit level implementation will be studied in future works.
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Appendix

A.1 Distance between Cascaded Instructions
Figure 13 depicts the distribution of the distance between cascaded instruc-

tions in an 8-way superscalar processor, following the whole instruction window
search policy which is expressed as the third bar in each benchmark in Fig. 9.
The distance results are averaged from benchmarks in either SPECint2000 or
Mediabench. The x-axis denotes the distance. At each x-position, the y value
along the vertical axis gives the cumulative frequency of 1 to x distances.

It can be observed from Fig. 13 that most of the consumer instructions of the
cascaded pairs in Mediabench applications can find their producers in an 8-entry
moving window. Note that in an 8-way superscalar processor, the decode width
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Fig. 13 Distance between instructions with dependences.

is actually up-to-8 �1 so that there is still a small gap between the averaged
IPC improvements in Mediabench in Fig. 9. Benchmarks from SPECint2000 are
relatively more complex, where the cumulative frequency will not converge near
100% until the distance exceeds 16. This observation can help determine the
suitable cascadable instruction search range. For Mediabench applications, it
is efficient to search backward to 8 prior instructions while for SPECint2000
programs, a large search window is preferred.

A.2 IPC Improvements under Idealized Environments
Figures 14 and 15 illustrate the possible IPC improvements after including

cascaded executions under idealized simulation environments. Two different cas-
cading search policies introduced in previous sections are employed. The two
figures have similar formats like Fig. 9.

Figure 14 uses perfect caches in the simulation. The main difference to Fig. 9
is in benchmark mcf which is a memory intensive application. The L2 cache
misses in the application will conceal the performance gaining from cascading
executions when the miss and the cascading happen in parallel. Using a perfect
cache can give a vision of the effectiveness from cascading without the influence
from cache misses, as shown in Fig. 14.

Figure 15 applies a more ideal environment with perfect caches, perfect branch
predictions, a 1,024-entry instruction window, and a 128-way superscalar proces-

�1 Other than the width, the cache line boundary and the taken branch will also end current
decode.

Fig. 14 Normalized IPC improvements after ALU cascading adoption under perfect cache
assumption.

Fig. 15 Normalized IPC improvements after ALU cascading adoption under further perfect
environment.

sor. It can be observed that the performance margins from cascaded execution
are magnified in this idealized environment. After minimizing the performance
impediments from other processor limitations, the averaged IPC improvements
become 28.4% in SPECint2000 and 33.8% in Mediabench, following the search
policy among the whole 1024-entry instruction window. These values indicate
the performance increasing potential from ALU cascading.

A.3 Influences from Decode and Issue Width
The simulation in Section 5 is based on an 8-way superscalar processor. How-

ever, it is possible that reducing the decode/issue width will drawback the ef-
ficiency of ALU cascading, especially under the simultaneously decoding search
policy.

Figure 16 gives the averaged IPC improvements when the fetch/decode/issue/
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Fig. 16 IPC improvements under 4-way and 6-way processors.

commit widths are reduced to 4 and 6 �1, respectively. In the 4-way superscalar
processor, the margins from cascading between whole window cascading to si-
multaneously decoded instructions are large, as shown in the first and second
bars in both the SPECint2000 and Mediabench.

In such cases, we can implement a decoded result buffer which has been in-
troduced in Section 5.2. The buffer holds the decode result of the prior cycle
to compare with a current decode result. By implementing this buffer, we can
obtain a doubled comparison width to detect more cascading opportunities. The
third bar in each benchmark group denotes the IPC improvement from this idea.
It adds back the performance improvement toward the value of cascading among
the whole instruction window.

The IPC improvements of the 4-way superscalar processor from cascaded ex-
ecution are smaller than the values of the 8-way superscalar processor in Fig. 9,
because of the shortage of free ALU resources to execute cascaded pairs. Since it
might be possible to design a complex processor architecture like current Pentium
4 and Itanium 2 under future processor technologies, we employed a relatively
heavy processor design in this research.
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�1 Pentium 4 29) and Itanium 2 30) employ 6-way superscalar processor architecture.
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