IPSJ Transactions on Programming Vol. 2 No. 2 166-175 (Mar. 2009)
Regular Paper

Recognizability of Redexes for
Higher-Order Rewrite Systems

HipETO KAsuva,f! Masaniko Sakaif?
and Kryosar Agusaf?

It is known that the set of all redexes for a left-linear term rewriting system
is recognizable by a tree automaton, which means that we can construct a
tree automaton that accepts redexes. The present paper extends this result to
Nipkow’s higher-order rewrite systems, in which every left-hand side is a linear
fully-extended pattern. A naive extension of the first-order method causes the
automata to have infinitely many states in order to distinguish bound variables
in A-terms, even if they are closed. To avoid this problem, it is natural to
adopt de Bruijn notation, in which bound variables are represented as natural
numbers (possibly finite symbols, such as 0, s(0), and s(s(0))). We propose
a variant of de Bruijn notation in which only bound variables are represented
as natural numbers because it is not necessary to represent free variables as
natural numbers.

1. Introduction

Tree automata® are valuable in proving various properties for term rewriting
systems (TRSs) and also in constructing their automated tools. The automata
construction that recognizes all redexes of a given TRS is a well-known technique,
which is based on the automata construction that recognizes all closed instances
of a given term. These techniques are used to, for example, characterize the set
of normal-forms and, when combined with the ground tree transducer technique,
solve reachability problems.

9)

TRSs are extended to higher-order rewrite systems (HRSs)?, introducing

higher-order variables. The matching problem of A-terms is decidable by us-

4).

ing the notion of O-tree automata Since a [-tree automaton is constructed

11 Faculty of Information Science and Technology, Aichi Prefectural University
12 Graduate School of Information Science, Nagoya University

166

from a term p containing one free variable z and a term ¢ and recognizes the
set of all terms s such that ¢ = p[z — s|, it is insufficient for characterizing all
normal forms and applying most automata techniques. Moreover, this method is
applicable for patterns of the fourth or lower order.

The present paper clarifies the construction of automata that recognize the set
of all redexes and/or the set of all terms having redexes for a given HRS. Since
tree automaton is used in the characterization, we have benefits that we can use
fruitful results of tree automaton technique to show various properties on HRSs.
In real, we use the notion of GTT (ground tree transducer) to show that the set
of terms reachable from a given regular set of terms is recognizable for a given
HRS having no common free variable in both sides of rewrite rules. Although this
class of HRSs is not practical itself, this reachability result is valuable because it
is applicable for ordinary HRSs to determine an approximated set of reachable
terms, which includes all reachable terms.

In extending the automata construction that recognizes all closed instances
of a first-order term to higher-order term, the a-equivalence causes a problem.
Closed terms may contain bound variables, and so we cannot bound the number
of possible variables, which causes the automata to have infinitely many sym-
bols and states to distinguish bound variables. It is natural to adopt de Bruijn
notation ™ in order to avoid the a-equivalence problem.

We introduce a variation of de Bruijn notation. The original de Bruijn notation
is modified as follows:

e We adopt an algebraic representation in which “application” is represented

by a special symbol “@Q” with arity two.

e Natural numbers are represented as 0, S(0), S(S(0)), ... by using special

symbols S with arity one and 0 with arity zero.

e Free variables are not coded by natural numbers.

For example, a A-term Ax.zy(Az.zx) is represented as A.12(\.12) in de Bruijn
notation and as A(@Q(Q(S(0),y), A(@Q(S5(0),.5(S(0))))) in the variant introduced
in the present paper. The first two modifications are natural because the language
definable by a tree automaton is a set of algebraic terms of a finite signature.
The third modification came from technical reason. More precisely, although we
need to prove that a redex po in de Bruijn notation is accepted by the produced

© 2009 Information Processing Society of Japan

167 Recognizability of Redexes for Higher-Order Rewrite Systems

tree automata for a left-hand side p and substitution ¢ in the notation, the
domain of substitution in the notation is restricted to singleton sets because it is
designed for dealing O-reduction. Hence some extension would be necessary for
this purpose. Moreover, the substitution is complicated and difficult since even
the substitution lemma in the notation proved by Ohtsuka ' is complicated.
Thus we tried a different approach by using ¢(P6) for po in proofs where ¢ is
the transformation of usual term to de Bruijn notation, and P and 6 are usual
representations of left-hand side and substitution, respectively. Since de Bruijn
notation is not unique with respect to free variable assignment, we omit the free
variables in order to obtain uniqueness of the de Bruijn notation.

The remainder of the present paper is organized as follows. We review the
basic notions of HRSs and tree automata in Section 2. We introduce a variant of
de Bruijn notation and describe some properties in Section 3. In Section 4, we
show a construction of tree automata that recognize the set of all closed instances
of a fully-extended pattern and discuss the regularity of redexes of fully-extended
HRSs. Finally, in Section 5, we state an application showing that the reduction
of some class of HRSs preserves regularity.

2. Preliminary

Let ¥ be a signature with arity function arity: F — N. Let X be a set of
variables. We denote the set of all terms constructed from symbols in ¥ and X
by 7(X U X) in the usual manner. We sometimes refer to these types of terms
as “algebraic” terms.

We use Occ(t) for the set of all occurrences of . We denote the subterm of a
term s at an occurrence p € Occ(s) by s|,. In addition, s[t], denotes the term
obtained from s by replacing subterm s|, by the term t. The top symbol of
t = f(t1,...,t,) is defined as top(t) = f.

2.1 Higher-Order Rewrite System

Let S be a set of basic types. The set 75 of types is generated from S by the
function space constructor — as follows:

Ts 25
s 2{a—d | a,d €15}
Let X, be a set of variables of type «, and let F, be a set of function symbols

IPSJ Transactions on Programming Vol. 2 No. 2 166-175 (Mar. 2009)

of type a.. The set of all variables is denoted by & = [J,c,. Xa, and the set of
all function symbols is denoted by F = Uaeﬁ Fo. We represent simply typed
A-terms by algebraic terms 7 (F U X U {Q, Az | x € X}), where arity(a) = 0
for a € FUX, arity(Az) = 1 and arity(Q) = 2. For example, A\zy.xy in
ordinary representation is written by Azx(Ay(@(z,y))). The definition is given by
the following inference rules:
re€X, feF, s:a—d t:a z:a s:d
r:a fra Q(s,t): o Ax(s)a— o

If M : « is inferred from the rules, then M is a simply typed A-term of type

a. A simply typed A-term is called a higher-order term, or simply a term, if no
confusion would arise. We use the concepts of bound variables and free variables.
The sets of bound and free variables occurring in a term M are denoted by
BV (M) and FV (M), respectively. The set FV (M) U BV (M) is denoted by
Var(M). A higher-order term without free variables is said to be closed. If a
term N is generated by the bound variables renaming in a term M, then N and
M are a-equivalent and are denoted by N = M.

We use F, G, X,Y, and Z for free variables and x, y, and z for bound variables,
unless known to be free or bound from other conditions. We also use ¢,d, f, g,
and h for function symbols and a for a variable or a function symbol. We also
use P, M, and N for A-terms

For a term @Q(A\x(M), N), B-reduction is the operation that returns the term
obtained from M by replacing all s by N, where Q(Az(M), N) is called a (-
redex. Let M be a term of type @ — o, and let « ¢ Var(M) be a variable of type
a. Then, n-ezpansion is the operation that replaces M in a term by Az(Q(M, x))
if it produces no new f-redex. A term is said to be 7n-long, if it is in normal form
with respect to n-expansion. In addition, a term is said to be normalized if it is
in § and n-long normal form. A normalized term of M is denoted by M|. Each
higher-order term has a unique normalized term .

A mapping ¢ from variables to higher-order terms is called a substitution if
o(X) is of the same type as X and the domain Dom(c) = {X | X # o(X)} is
finite. If Dom(o) = {X1,...,X,} and o(X;) = M;, we also write the mapping
aso ={X; — My,..., X, — M,}. Let W be a set of variables, and let o be
a substitution. We write o|y for the substitution obtained by restricting the

© 2009 Information Processing Society of Japan

168 Recognizability of Redexes for Higher-Order Rewrite Systems

domain of o to Dom(c) N W and write o3 for that obtained by restricting its
domain to Dom(c) — W. For a substitution o, the set of free variables in the
range of o is defined by VRan(o) = Uxcpom(o) 'V (0(X)).

A substitution o is extended to a mapping & from higher-order terms to higher-

order terms as follows:

F(M) = Q(QAX; (\Xo (M), M), My)

where, for simplicity, Dom(c) = {X1, X2}. Generally, when we extend a sub-
stitution o to &, the condition is required whereby the domain and range of o
do not contain any bound variables in the term to which the substitution & is
applied. Here, note that when we adopt the above definition of & obtained by
using (-reduction, we need not mention the condition explicitly. The above con-
dition can always be satisfied by appropriately renaming bound variables. In the
following, we simply write o for & and Mo for o(M). A substitution o is said to
be normalized if ¢(X) is normalized for any X € Dom(o).

For N = Q(---@Q(Q(M, Ny),Na),...,N,) such that top(M) # Q, we define
etop(N) by top(M). Let N be a normalized term such that etop(N) € F, and let
M|, denote the n-normal form of M ®. A linear normalized term N is said to
be a pattern, if every basic typed subterm M of N, such that etop(M) is a free
variable, has the form Q(---Q(Q(F, M), Ms),...,My) and if My |,,..., M, |,
are different bound variables. Moreover, this linear normalized term is said to
be fully-extended if M |, --- M, |, is a sequence of all bound variables. For
example, Q(f, \x(Q(F, \y(Q(z,y)))) *! is a fully-extended pattern.

Let a be a basic type, let | : a be a pattern, and let r : a be a normalized term.
Then, [> 7 : a is called a higher-order rewrite rule of type a*2. A higher-order
rewrite system (HRS) is a set of higher-order rewrite rules. Let R be an HRS,
let I > r be a rewrite rule of R, and let o be a substitution. Then, lo| is said to
be a redexr. If M and N are normalized terms such that M = M|[lo |], for an
occurrence p and N = M([ro |],, then M can be reduced to N. This is denoted
by M —pg N, or simply M — N. Since all rewrite rules are of basic type, IV is

normalized if M is normalized '©.

*1 f(Az.F(A\y.zy)) in Nipkow’s algebraic notation.
*2 In the present paper, we do not assume FV (I) D FV(r).

IPSJ Transactions on Programming Vol. 2 No. 2 166-175 (Mar. 2009)

2.2 Tree Automaton

Definition 1 (tree automaton) A tree automaton is a tuple A =
(@,X,Qyf,9), where Q is a finite set of states, ¥ is a signature such that QNX = 0,
Q7(C Q) is a set of final states, and ¢ is a set of transition rules of the following

forms:
flqu, - an) — ¢
where q1,...,qn,q € Q, f € X, arity(f) = n. U

In particular, a tree automaton is deterministic if there are no two rules having
the same left-hand side. A transition relation — 4 of a tree automaton A on
T(QUY) is defined as follows:

flar, .. an) —aq if f(q1,...,qn) = q€0
f(...,s,...)—>Af(...,t,...) ifS—>At
Reflexive transitive closure of — 4 is denoted by —7%.
def

A tree automaton A accepts a term t € T(X) if &y —% ¢ € Qf. The set of
all acceptable terms are called the language of A, which is denoted as L£L(A). A
set L of terms are regular if there exists a tree automata A such that L = £(A).

3. Variant of de Bruijn Notation

In this section, we introduce db-terms as a variant of de Bruijn notation.

For a function symbol F of higher-order terms, de Bruijn notation is a term
with a signature ¥ = FUXU{\, @, S, 0}, where arity(a) = 0 for a € FUXU{0},
arity(\) = 1, arity(S) = 1, and arity(Q) = 2. Note that variables in X are used
as free variables. In the following, we use p, s, and ¢ for db-terms.

Definition 2 (db-term) Let M be a A-term. The db-term that represents
M is ¢(M), where the function ¢ and [], which represents the replacement of
bound variables, are defined as follows:

o(a) =a ifaec FUX
o(Q(M,N)) = Q(¢(M),d(N))
o(Az(M)) = M(M)[z — 1])

) S™(0) ifa=yeX
aly =l = { a otherwise

© 2009 Information Processing Society of Japan

169 Recognizability of Redexes for Higher-Order Rewrite Systems

AT A

l
/@\ /%
/ N, / \
)\-term

db—term ‘T

Fig.1 Correspondence of A-term and db—term.

Q(s, t)[y = n] = Q(s[y — n], tly — n])

A($)ly = nl = Alsly — n+1]) 0
The following are examples of translation from algebraic terms to db-terms.
Example 3

Az (Ay(Q(z,y))))
= AMo(y(Q(z,y)))[z — 1)
AA(Q(z y[[yHl]])[[le]])
AA(@(52(0), 5(0))))
(@(f, (Y, z)),x)))

o(Az(@(Q(f
A@(@(f, @Y, z)), z))[x — 1])
Al@(a(f,a(y,5(0))),5(0)))

O

Note that Occ(M) C Oce(p(M)) holds. Moreover, the symbol at each occur-

rence in a A-term corresponds to that in the db-term. For the second example,
the correspondence between the terms is shown in Fig. 1.

It is easy to replace free variables by natural numbers, as in the original

X be free variables of a A-term M. Then,

[Xy +— k] is one such term. In this sense, the original de

de Bruijn notation. Let Xj,...,
pM[X1 — 1]
Bruijn notation of terms having free variables is not unique.

The original de Bruijn notation is closed under subterms. A similar property
also holds for the variant notation. For example, consider a subterm ¢t = s1; =
@(5%(0),S(0)) of a db-term s = A(A\(@(5%(0),S(0)))). We have a A-term N =
Q(x,y) that satisfies ¢(N)[y — 1][z — 2] = ¢. The following lemma and

IPSJ Transactions on Programming Vol. 2 No. 2 166-175 (Mar. 2009)

proposition state this type of closedness under subterms.

Before showing the lemma, we introduce some notation. For a term M and
p € Occ(M), we use BV,(M) to denote the sequence of A-binders in the path
from p to e. For example, BVi1(Ax(Ay(Q(z,y)))) = y x. We sometimes write
My, ..., [N]p by presenting this information BV,(M) = 1 ---z, explicitly for
replacement M [N],.

Lemma 4 Let M be an algebraic term and an occurrence u € Oce(M) such
that no free variable appears at each v(<). For any algebraic A\-term T,

My [T1) = S(M)G(T) 1 > 1] -+« [= Kl 0
The proof of this lemma is found in Appendix A.1

Proposition 5 Let t be a subterm of a db-term. Then, there exists an alge-

braic term M and variables z1, ...,

d(M)[xy — 1] [z — k] =t
Proof. Let t' be a db-term, and let 7’ be an algebraic term such that ¢’ = ¢(T") =
t'[t],. By renaming bound variables, we can represent 7" as T}, ., [T'|u]u. We
take T = T'|,. By Lemma 4, we have (T}, . ., [T].) = ¢o(T")[¢(T)[z1
1 [z = Klu. Thus, t = 6(T")| = S(T)[zr — 1] -+ - [ax > K], O

xy, such that

4. Tree Automata Construction

We show a construction of a tree automaton that accepts instances of a pattern.

First, we present an example. Consider a pattern P = \x(Q(Q(f, Q(Y, x)), z)).
The automaton we construct must accept db-term ¢ = A(Q(Q(f, s), S(0))), where
s is arbitrary. The set Occ(P) N Occ(t) of occurrences regarding s as constant is
called the skeleton of P, which is given as follows.

Definition 6 (Occurrences of skeleton) Let P be a pattern. Occ®(P)(C
Occ(P)), which denotes the set of all occurrences of the skeleton of P, is defined
as follows.

{e} U{lu|u € Occ*(N)} if M =Ax(N)
Occ®* (M) = < {e} if etop(M) € FV(P)or M € FUX
{e}U{iu|u € Occ®*(M;)} otherwise, where M = @Q(M, M>)

Next, we present an automata construction.

Definition 7 (Tree automata construction) Let P be a fully-extended
pattern, and let p be a db-term such that p = ¢(P). Let k be the maximum

© 2009 Information Processing Society of Japan

170 Recognizability of Redexes for Higher-Order Rewrite Systems

of S¥(0) that appears in p. We construct a tree automaton Ap = (Q,%,Qy,d)
that recognizes the set of all db-terms that represent instances P6] of pattern P.
={q}U{qu | v € Occ*(P)}U{g, | 0 <m < k}U{g | f e F}
Y =FuU{\@S50} and Qf = {g-}. The set ¢ of transition rules consists
of the following rules.
(1) For each u € Occ?(P),
(1-1) g1 — qu if etop(P|,) is a free variable,
(1-2) otherwise
(1-2-1) a — g, if Ply=a € F,
(1-2-2) ¢, — ¢, 1if P|, is a bound variable, where n is determined by
p|u = Sn(o)v
(1-2-3) Mqu1) = qu if Pl = MT),
(1-24) Q(gu1, Gu) — u i Ply = Q(M, N),
(2) 0 — ¢ and S(q,_;) — q, for each n € {1,...,k},
(3)qa — qu for each a € F, S(q)) — qu, S(¢g.) — qu, AgL) — qu, and
Q(qr,q1) — qu-

Example 8 (tree automaton Ap) Let P=\z(Q(Q(f, Q(Y,x)),x)). Then,
p = A@Q(Q(f, Q(Y,S5(0))),S5(0))) and k = 1. The tree automaton that accepts
db-terms of instances of P is Ap = (Q,%,Qy,), where @y = {¢.}, and ¢ is
the set of transition rules shown in Fig.2. By this tree automaton, db-term
A(Q(@(f,S(0)),5(0))) of (Az.f(Y(z),z))[y — Ay.y]l= Az.f(z,x) is accepted by
Ap, as shown in Fig. 3. O

Theorem 9 Let P be a fully-extended pattern, and let A be the automaton
constructed from P. Then,

£(A) = {6(M) | M € Ip},
where Ip is the set of all closed instances of P. O
The proof of this theorem is presented in Appendix A.2.

Note that it is impossible to remove the “fully-extended” condition from the
Theorem 9. Consider a non-fully-extended pattern Ax(X). The following db-
terms are instances of the pattern.

d(Az(Ay1(y1))) = A(A(S(0))),

IPSJ Transactions on Programming Vol. 2 No. 2 166-175 (Mar. 2009)

Rules by (1)
qL
f
a0
M)
@(ﬁhhqu)
Q(q111, q112)
Rules by (2)

qi12
qi11
q12
e
q1
q11

LeLbbbd

Rules by (3)
f - qL
S(Qé) - gL
S(q1) - qu
Agr) - qL
Q(gi,q1) — qu

Fig.2 Transition rules of Ap in Example 8.

090

Fig.3 Run of db-term A(@Q(Q(f, S(0)),S(0))) by Ap.

Az (Ay1(Ay2(y1)))) = AAA(S%(0)))),

However, the following db-terms are not instances of the pattern.

S(Az(Myr (@) = AA(S(0))),
P(Ar(Ay1(My2(2)))) = AAA(S(0)))),

are not instances of the pattern. These examples show that we must distinguish

© 2009 Information Processing Society of Japan

171 Recognizability of Redexes for Higher-Order Rewrite Systems

S"(0) and S"*1(0) for arbitrary n, which is impossible by an automaton, since
the states are finite. Thus, there exists no automaton that recognizes instances
of the pattern. We omit the lengthy and tiresome proof using pumping lemma ®,
which is not difficult to prove.

Theorem 10 Let algebraic A-term P be a fully-extended pattern. There is
a tree automaton that accepts db-terms that represent closed terms containing
instances of P.

Proof. Let A be the tree automaton obtained from Ap by adding the following
rules.

AMge) — ¢

Q(ge,q1) — ¢e

Qg1 q) — ¢
Then, A accepts db-terms of C[P]|]. Based on the construction of A and Theo-
rem 9, this is trivial. O

Theorem 11 Let R be an HRS. It is possible to make a tree automaton that
accepts db-term representations of reducible terms by R.

Proof. This is shown from Theorem 10 and the closure property under union of
tree automata. ([

5. Application to Reachability Problems

The Ground Tree Transducer (GTT)® is a pair of automata that represents
a relation between trees. The advantage of GTT lies in its closure property for
transitivity. GTT is defined as follows:

Definition 12 (GTT) GTT is a pair of tree automata working on the same
alphabet. Their sets of states may have the same symbols. Let A; and As be tree
automata on X. A pair (¢t,t') € L C 7(%,0) x 7(X,0) is recognized by a GTT
GTT(Aq, Ay), where L is the smallest set that satisfies the following conditions:

{(t,) [t =%, g7, s} C L
(f(tl, e ,tn), f(Sl, ey Sn)) e L if (ti, Sl) €L
O
Theorem 13 (Reference®) If a relation R C 7 (2V)? is recognized by a

1

GTT, its reverse closure R™" and transitive closure R* are also recognized by a

GTT.

IPSJ Transactions on Programming Vol. 2 No. 2 166-175 (Mar. 2009)

For a regular set L C T(XV), R[L] = {s | sRt 3t € L} is also regular. O
Next, we show that reduction by a class of HRSs preserves regularity.
Theorem 14 Let R be an HRS such that every rule It>7 satisfies the following

conditions:

e FV()NFV(r)=0 and
e 7 is fully-extended pattern.
If L C T(XV) is regular set, then
—nrLl={s|s—kt, IHtel}

is also regular.

Proof. Let R = {ly > r1,...,l, > 1ry,}. We have tree automata A; (B;), each

of which accepts instances of I; (r;) with the only final state ¢;, such that states

other than final states are disjoint. This is made possible by Theorem 9. Next,

we construct a GTT G on T (XN, 0) as GTT(U; Ai, U, Bi). Then, G recognizes a

relation L such that —rC L C—7%. Since there exists a GTT G’ that recognizes

L* by Theorem 13, the GTT G’ recognizes —7.

Therefore, the theorem follows from the latter part of Theorem 13. g
Acknowledgments We thank anonymous referees for giving useful com-
ments. This study was supported in part by MEXT. KAKENHI #18500011,

#20300010, and #20500008.

References

1) Andrews, P.B.: Resolution in Type Theory, Journal of Symbolic Logic, Vol.36,
No.3, pp.414-432 (1971).

2) Bonelli, E., Kesner, D., and Rios, A.: A de Bruijn Notation for Higher-Order
Rewriting, Proc. RTA 2000, LNCS, Vol.1833, pp.62-79 (2000).

3) Comon, H., Dauchet, M., Gilleron, R., Loding, C., Jacquemard, F., Lugiez, D.,
Tison, S., and Tommasi, M.: Tree Automata Techniques and Applications,
http://www.grappa.univ-lille3.fr/tata (2007).

4) Comon, H. and Jurski, Y.: Higher-Order Matching and Tree Automata, Proc.
CSL °97, LNCS, Vol.1414, pp.157-176 (1997).

5) Conquidé, J.-L. and Gilleron, R.: Proofs and Reachability Problem for Ground
Rewrite Systems, Proc. 6th International Meeting of Young Computer Scientists,
LNCS, Vol.464, pp.120-129 (1990).

6) Dauchet, M. and Tison, S.: Decidability of Confluence for Ground Term Rewriting
Systems, Proc. 1st Fundamentals of Computation Theory, LNCS, Vol.199, pp.80—89
(1985).

© 2009 Information Processing Society of Japan

172 Recognizability of Redexes for Higher-Order Rewrite Systems

7) de Bruijn, N.G.: Lambda Calculus Notation with Nameless Dummies, a Tool for
Automatic Formula Manipulation, Indagations Mathematicae, Vol.34, pp.381-392
(1972).

8) Miller, D.: A Logic Programming Language with Lambda-Abstraction, Function
Variables, and Simple Unification, Journal of Logic and Computation, Vol.1, No.4,
pp-497-536 (1991).

9) Nipkow, T.: Higher-Order Critical Pairs, Proc. 6th IEEE Symposium, Logic in
Computer Science, pp.342-349, IEEE Press (1991).

10) Nipkow, T.: Orthogonal Higher-Order Rewrite Systems are Confluent, Proc. Typed
Lambda Calculi and Applications, LNCS, Vol.664, pp.306-317, Springer-Verlag
(1993).

11) Ohtsuka, H.: A Proof of the Substitution Lemma in de Bruijn’s Notation, Infor-
mation Processing Letters, Vol.46, Issue 2, pp.63-66 (1993).

Appendix

A.1 Proof of Lemma 4
Proof of Lemma 4. We prove the following generalized claim by induction
on the length |u| of .
S(My ooy [TT) 1 = 1] -+ [y = 1]
=o(M)[yr = 1] -+ [y — 1]
(D)1 = 1] -+ [wx = Kllyr = E+ 1] - [y = b+]]u
In the case of u = ¢, k must be 0. The claim trivially holds from ¢(M[T].) =
o(T).
In the case of u = iu’ we have two subcases, because M = a € F U X implies
U =E€.
(1) Consider the subcase of M = Axy. M’ and i = 1.
(left-hand side of the claim)

:sb((mk(M'))zpmk[T] My = 1] [y = 1]

(Aﬂfk(treans L))y = Ay = 1]
=A(¢(M, ml vy L)k = 1Dy = 1] - [y = 1]
=MO(M,...q [Tl = 1][y2 = 2] -+ [y = 1 +1])

=A@(M") [z = 1y = 2] - [y = 1+ 1]

[@(T)[z1 = 1] - - [zx = K][yr — E+1] -
where the last step is realized by induction.

(right-hand side of the claim)

[yr =k + 1))

IPSJ Transactions on Programming Vol. 2 No. 2 166-175 (Mar. 2009)

=Mz M)y — 1] - [yi — 1]

[D(T)zr — 1] Jag — k][ya — k+ 1] [y — k+]]w
=AM)z — 1Dlyr = 1] [y — 1]

(D) [xr — 1] - [z = E][yr — k+ 1] - [y = k4]]u
=AM)z — [y — 2] - [y — 1 +1])

(D) [z1 = 1] - [z = k]lyr = k+ 1] - [y = k4]
=AM [zr = 1[yr = 2]+ [y — 1+1]

(D) zr— 1] e — k]Jyn — k+ 1] [y — &+]]w)

(2) Consider the case of M = Q(Mj, Ms) and i € {1,2}. We assume i = 2

without loss of generality.
(left-hand side of the claim)

=¢(Q(M1, M2)a, v [T]2u)y — 1]+ [y = 1]
=¢(Q(My, (Mz)z, - [T]e) [y = 1] -+ [y — 1]
=Q(¢(M1), p(M2)ey -0, [T))yr = 1] -+ [y = 1]
=Q(¢(M)[yr — 1]+ [y = 1, 6((M2) 0, [T]ur) [y = 1] -+~ [= 1)
=Q(o(M)[yr = 1]+ [y = 1, 6(M2)[yr = 1] -+ - [y — 1]
[O(T) w1 = 1] - - [k = k][yr — K+ 1] [= b+ 1]ur)
where the last step is realized by induction.
(right-hand side of the claim)
=¢(Q(M, M2))[yr — 1] -+ [y — 1]
[o(T)[2z1 = 1] [z = K][yr — k+1] - [y — k+1] Ju
=Q(¢(Mn), p(M2))[yr = 1] -+ [y — 1]
[o(T)[[:E1»—>1]] ﬂkak]][[ylHk+1]] Ny — kE+1] Ju
=Q(p(M1)[yr — 1]+ [yr = 1], ¢(M2)[yr = 1] - [y = 1])
[(T)[z1 — 1] -+ - [zx — K][y1 — K + 1]] =k + 1w
=Q@(¢p(M1)[yr = 1] -+ [y = 1], (M) [yr = 1] - - [— 1]

[p(T)[z1 — 1] -+
A.2 Proof of Theorem 9
For any tree automaton Ap constructed by Definition 7, the following propo-

[z = Kllyr = k+1] - [y = &+]]ur) O

sitions trivially hold.

Proposition 15 For any A-term M, ¢(M) 54, q.. |
Proposition 16 If ¢t = S™(0) and m is less than or equal to k in the defini-
tion 7, then S™(0) 54, ¢,,. O

© 2009 Information Processing Society of Japan

173 Recognizability of Redexes for Higher-Order Rewrite Systems

Some technical lemmas are necessary in proving Theorem 9.

Lemma 17 Let P be a pattern, and let # be a substitution such that every
free variables does not appear as a bound variable in P. Let u € Occ®(P), and
let P be represented as Py, ..., [P|y]w, for some bound variables x1, .. .,

POL= (PO))s,...0, [(Pl)01]-
Hence,
(POL)|u = (Plu)0l
Proof. We prove this lemma by induction on the length |u| of occurrence w.

x). Then,

In the case u = €, £ = 0, and so the lemma follows trivially. Consider the case
u = vi. We have only the following two cases because u € Occ®(P).

o If P|, = Q(Ty,T,) and i € {1,2}, we have P = Py, ..., [Q(Ty,Ts)],. Here,
etop(Ty) is not a free variable; otherwise vi & Occ®(P). We have P0 |=
(PO])s, ., [Q(T1, T5)6]], by induction. Thus, PO|= (P8)y, ..c;. [T:0]]u-

o If Pl, = Ay(T) and ¢ = 1, we have y = 21 and P = Pyy..p [A21(T)]o-
We have PO|= (P0])y,..., [(Ax1(T))0]], by induction. Since free variables
are not used as bound variables, we have (Ax1(T))0 = Ax1(T0]). Hence,
Po|= (Pal)xlmxk [T9l]u- O

Lemma 18 Let P be a pattern, u € Occ®*(P). In addition, let 6 be a substi-

tution, and let k be the maximum of S*(0) that appears in ¢(P).

(2) 6(P8)l = ©(&(PO lut, 6P)luz) if Pl = (T1,T) and ctop(Pl.) ¢
FV(P)

(b)d(PO))|y =aif Ply,=a€F

(b)d(PO)|y = &(P)]w = S™(0) for some n (0 < n < k) if P|, € BV(P).

(©) S(POL)w = A(G(POL)wr) if Pl = Au(T")

Proof. Since Pf| can be written as (P8])z,..0,, [(PO])|u]u for some bound
variables x1, ..., 2, (m < k), we have
6(PBL) = H(POL)[B((POL))1 +— 1] -

by Lemma 4. Thus, we have

P(PO)|u = ¢((POL)|u) 71— 1] -

= ¢((Plu)0)[z1 = 1] - -
by Lemma 17.

(a) Let P|, = @Q(T},T») and etop(P|,) € FV(P). Then,
S(POL) = O((Pl)0L) s 1] -

[[xm = mﬂ]u
[£m — m]
[— m].

[£m — m]

IPSJ Transactions on Programming Vol. 2 No. 2 166-175 (Mar. 2009)

= ¢(Q(T10],T20]))[z1 — 1] - [2m = m]
= Q(¢(T10])[z1 — 1] -+ - [z = m]
H(T20)[x1 1] - - - [y = m])

On the other hand, we also have the following by Lemma 4 and Lemma 17,

because ui € Occ®(P) for i € {1,2}:
¢(PO))|ui = d((POL)|ui)[21 — 1] -

O(Tib))[z1 — 1] --

[xm — m]
[[il?m —m]
Therefore,
(PO = Q(H(POL)]ur, §(PO])[uz)-
(b) Let P|, = a € F. Then,

(POL)|u = ((Plu)01))[xr — 1] - - [2rm — m]
= ¢(@)[zr = 1] - - [z — m]

(b’)Let P|, =z, € BV (P) for some n (1 <n <m < k). Then
(PO = o((Plu)0L))[21 — 1]]
= ¢(@p)[z1 — 1] - [2m — m]
=zpfry — 1] - [[xm — m])
= 5"(0)
Similarly, using Lemma 4 and Lemma 17, we can show that ¢(P)|,, = S™(0).
(c) Let P|, = Az(T). Then,
¢(PO)|u = o((Plu)01))[z1 = 1] - - [wm = m]
= o((A2(T))0)[w1 = 1] - -
= oAz (T0]))[z1 = 1] -+ [2m — m]
= x(d(TO)) [z — 1])[z1 — 1] - - [z — m]
= z(d(TO)) [z — 1][z1 — 2] -+ [Xr — m + 1])
On the other hand,
Pal: (Pol)xxlxm[(Pal”ul]ul
Thus, we have the following by Lemma 4 and Lemma 17 because ul €
Occ®(P):
O(PO)]ur = ¢((POL)]u1)[z — 1][z1 — 2] - [= m + 1]
=¢(TO))[x — 1]Jx1 — 2] - - [z — m + 1]
Therefore, ¢p(PO|)], = AN(d(POL)]u1)- |

ﬂxm = m]]

[z — m]

© 2009 Information Processing Society of Japan

174 Recognizability of Redexes for Higher-Order Rewrite Systems

Proof of Theorem 9.
D-direction: It is sufficient to show the claim that
QS(PQU‘U i’A Gu

for any substitution 6, such that P6| is closed and for any position u € Occ®(P).
This claim is proved by induction on the structure of P|,. We have several cases
according to the definition of Occ?®.
(1) In the case of P|, = Az(N), we have ¢(PO |)|, = A&(PO |)|u1) from
Lemma 18(c). Since ¢(P|)|s1 —4 qui by induction hypothesis, we obtain
A(PO)|w =4 Mqui) — 4 qu from Definition 7 (1-2-3).
(2-1) In the case of etop(P|,) = X € FV(P), we have ¢(P8])|y —4 q1 —A Gu
by Proposition 15 and Definition 7 (1-1).
(2-2) In the case of P|, is a function symbol a, we have ¢(P8|)|, = a from
Lemma 18(b). Thus, a — 4 g, from Definition 7 (1-2-1).
(2-3) In the case of P|, is a bound variable =, we have ¢(P@])|, = S™(0) =
#(P)|, for some n(> 0) from Lemma 18(b’). Thus, S¥(0) =4 ¢, —4 ¢, from
Definition 7 (2) and Proposition 16.
(3) In the case of P|, = Q(M, N) and etop(P|,) ¢ FV(P), we have ¢(P0])|., =
Q(A(PO) |u1, #(PO)|u2) from Lemma 18(a). Since ¢(PO|)|ui —4 qui by in-
duction for i € {1,2}, we obtain ¢(P0])|y —a Q(qu1,qu2) —4 Gu from Defini-
tion 7 (1-2-4).

C-direction: It is sufficient to show the claim that

t 554 q, implies 30 s.t. ¢(PO)|, =t

for any subterm ¢ = s|,, of a closed db-term s. Note that u € Occ®(P) for g, € Q.
This claim is proved by induction on the length of ¢t =4 ¢q,. We have several
cases according to the rules used in the last step of the sequence.
(1-1) In the case of t =54 ¢ —4a qu, the rule of the last step is constructed
in Definition 7 (1-1), and so etop(P],) is a free variable F. We can write P as
Py, ...z, [Plu]u by displaying bound information at the occurrence u. Since P is
a free-extended pattern, P|, is in the form of Q(--- Q(F,z;,)---
J1,--+,Jm iS a permutation of 1,...,m.

On the other hand, there exists a term 7" such that t = ¢(T)[x1 — 1] - - - [z —
k] for some k (Proposition 5).

Next, we take § as F'§ = Axj, (--- Azj,, (T')). Then, we have (P0|)|, = (Pl.)8l=

,xj,), where

IPSJ Transactions on Programming Vol. 2 No. 2 166-175 (Mar. 2009)

T by Lemma 17. Hence,
POL= POly,...c,, [(PO])]u].
— POl (1],
Therefore,
S(POL)u = S((POL)er -z [Th)l
=¢(T)[z1 — 1] - [ty — m] by Lemma 4
Here, FV(T) C {x1,...,Zm}, and ¢t has no x;’s because ¢ is a subterm of a closed
db-term. Thus,
B(POL) | = O(T) [— 1] - [= 1]
=¢(T)[ry — 1] - [z — K]
=1.
(1-2-1) In the case of ¢ 54 a —4 qu, we have P|, = a € F from Definition 7.
Thus, ¢(P0|)|, = a =t.
(1-2-2) In the case of t <54 ¢/, —a qu, P is a bound variable and ¢ = S™(0) =
¢(P)|y from Definition 7. Thus, ¢(P6])|, =t follows from ¢(PO|)|, = ¢(P)|y.
(1-2-3) In the case of t >4 A(qu1) —A Gu, Py is in the form of A\x(T) from
Definition 7. Since t = A(t1) for some ¢; and ¢; A Qui, we have d(PO)|u1 =t
for some # by induction. Therefore, we have ¢(P0)|, = AM(Pp(PO)|u1) = A(t1) =t
by Lemma 18 (c).
(1-2-4) In the case of t 5 Q(q1,92) A Gu, we have P|, = Q(My, M), and
etop(P)], is not a free variable from Definition 7. Since t = Q(t1,t5) for some t;
and ty and t; =4 ¢; (i € {1,2}), we have ¢(Pb;)|,; = t; for some 6; by induction.
From the linearity of P, we can take some 6 such that ¢(P@)|,; = t; for all
i € {1,2}. Therefore, 9(PO) = Q((PO1)|u1, (PO|)lu2) = Qlt1,12) = t by
Lemma 18 (a). O
(Received September 28, 2008)
(Accepted December 27, 2008)

© 2009 Information Processing Society of Japan

175 Recognizability of Redexes for Higher-Order Rewrite Systems

4

Hideto Kasuya completed graduate course of Nagoya Univer-
sity in 1997. He is a Research Associate of the Faculty of Infor-
mation Science and Technology, Aichi Prefectural University. He
is interested in term rewriting system and rewriting strategy. He
is a member of IPSJ, IEICE and JSSST.

Masahiko Sakai completed graduate course of Nagoya Univer-
sity in 1989 and became Assistant Professor, where he obtained
a D.E. degree in 1992. From April 1993 to March 1997, he was
Associate Professor in JAIST, Hokuriku. In 1996 he stayed at
SUNY at Stony Brook for six months as Visiting Research Pro-
fessor. From April 1997, he was Associate Professor in Nagoya
University. Since December 2002, he has been Professor. He is

interested in term rewriting system, verification of specification and software
generation. He received the Best Paper Award from IEICE in 1992. He is a
member of IEICE and JSSST.

IPSJ Transactions on Programming Vol. 2 No. 2 166-175 (Mar. 2009)

Kiyoshi Agusa is a professor of Department of Information
Systems, Graduate School of Information Science, Nagoya Uni-
versity. He received Ph.D. degree in computer science from Kyoto
University in 1982. His research area is software engineering, es-
pecially dependable software, programming environment and soft-
ware reusing. He is a member of ACM, IEEE, IPSJ, IEICE and
JSSST.

(© 2009 Information Processing Society of Japan

