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On the Robustness of Information Retrieval Metrics

to Biased Relevance Assessments
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Information Retrieval (IR) test collections are growing larger, and relevance
data constructed through pooling are suspected of becoming more and more
incomplete and biased. Several studies have used IR evaluation metrics specif-
ically designed to handle this problem, but most of them have only examined
the metrics under incomplete but unbiased conditions, using random samples
of the original relevance data. This paper examines nine metrics in more re-
alistic settings, by reducing the number of pooled systems and the number
of pooled documents. Even though previous studies have shown that metrics
based on a condensed list, obtained by removing all unjudged documents from
the original ranked list, are effective for handling very incomplete but unbiased
relevance data, we show that these results do not hold when the relevance data
are biased towards particular systems or towards the top of the pools. More
specifically, we show that the condensed-list versions of Average Precision, Q-
measure and normalised Discounted Cumulative Gain, which we denote as AP′,
Q′ and nDCG′, are not necessarily superior to the original metrics for handling
biases. Nevertheless, AP′ and Q′ are generally superior to bpref, Rank-Biased
Precision and its condensed-list version even in the presence of biases.

1. Introduction

Information Retrieval (IR) test collections are growing larger, and relevance
data constructed through pooling 3),16) are suspected of becoming more and more
incomplete and biased 2),5). Relevance data are incomplete if some relevant docu-
ments exist among the unjudged documents in the test collection. Furthermore,
incomplete relevance data are biased if they represent some limited aspects of
the complete set of relevant documents. For example, if the number of pooled
systems is small, the resultant test collection may overestimate these systems and
underestimate systems that did not contribute to the pool, since these new sys-
tems are likely to retrieve relevant documents that are outside the set of known
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relevant documents. We will refer to this phenomenon as system bias 15). Bias
may also be caused by shallow pools: If only documents at the very top of sub-
mitted ranked lists are judged, the resultant relevance data may contain relevant
documents that are very easy to retrieve, but not those that are difficult to re-
trieve. For example, Buckley, et al. 3) report that the TREC 2005 HARD/Robust
test collection is biased towards documents that contain topic title words due to
shallow pools. We will refer to this phenomenon as pool depth bias 14).

The objective of this paper is to examine the robustness of IR effectiveness
metrics in the presence of system bias and pool depth bias, with an emphasis
on metrics that can handle graded relevance. Several researchers have proposed
evaluation metrics specifically for handling the incompleteness of relevance data,
but most of them have only examined the metrics under incomplete but unbi-
ased conditions, using random samples of the original relevance data 1),2),11),16),22).
While random sampling may mimic a situation where the number of judged doc-
uments is extremely small compared to the entire document collection, it does
not address the problems due to system bias and pool depth bias. Therefore,
this paper examines metrics in more realistic settings, by reducing the number
of pooled systems and the number of pooled documents.

The main contributions of this paper are as follows. First, we examine as
many as nine metrics for handling system bias and pool depth bias in test
collections. The metrics examined are: Average Precision (AP), Q-measure
(Q) 13), normalised Discounted Cumulative Gain (nDCG) 7), Rank-Biased Preci-
sion (RBP) 10), binary preference (bpref) 2), AP′, Q′, nDCG′ and RBP′. The lat-
ter four metrics are AP, Q, nDCG and RBP applied to a condensed list, obtained
by removing all unjudged documents from the original ranked list 11),16). Thus,
just like bpref, these four metrics assume that retrieved unjudged documents are
nonexistent, while traditional metrics assume that the unjudged documents are
nonrelevant. Even though previous studies have shown that condensed-list met-
rics are effective for handling very incomplete but unbiased relevance data 11),16),
we show that they are not necessarily superior to the original metrics in the
presence of system bias or pool depth bias. This discrepancy suggests that the
results reported in previous studies that used random sampling should be inter-
preted with caution. Second, our extensive experiments cover two independent
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1411 On the Robustness of Information Retrieval Metrics

evaluation efforts, TREC and NTCIR 9), and utilise their graded relevance data.
This is in contrast to most existing studies that are limited to TREC data and
binary-relevance metrics 1),2),22). Since our results are consistent across all of our
data sets, we believe that our findings are general. Our main findings are:
( 1 ) Condensed-list metrics overestimate systems that did not contribute to the

pool while traditional metrics underestimate them, and the overestimation
is larger than the underestimation.

( 2 ) When runs from a single team or a few teams are used for forming the
relevance data, AP′, Q′, nDCG′ are not necessarily superior to AP, Q and
nDCG in terms of discriminative power, i.e., the overall ability to detect
pairwise statistical significance 12).

( 3 ) Similarly, when shallow pools are used for forming relevance data, AP′, Q′,
nDCG′ are not necessarily superior to AP, Q and nDCG.

( 4 ) Nevertheless, in the presence of system bias or pool depth bias, AP′ and
Q′ are generally more discriminative than bpref, RBP and RBP′.

Finding ( 1 ) substantially generalises that by Büttcher, et al. 5), who analysed
a TREC Terabyte data set and observed that “Where AP underestimates the
performance of a [new] system, bpref overestimates it.”

The remainder of this paper is organised as follows. Section 2 discusses previous
work, and Section 3 formally defines the nine metrics considered in this study.
Section 4 describes the graded-relevance data and runs from TREC and NTCIR
which we use for comparing the metrics. Sections 5 and 6 examine the robustness
of our metrics to system bias by reducing the number of runs used to form the
relevance data. Section 7 examines the robustness of our metrics to pool depth
bias by reducing the number of pooled documents. Finally, Section 8 concludes
this paper.

2. Related Work

A decade ago, Zobel 23) examined the effect of pool depth and that of leaving out
one run for forming the TREC relevance data. As TREC test collections at that
time, i.e., TRECs 3-5, were based on binary relevance, he used binary-relevance
metrics such as 11-point average precision. Subsequently, TREC adopted his
leave-one-out methodology for validating their test collections, but chose to leave

out one participating team at a time since each team usually contributes multiple
runs to a pool 3). The present study also includes leave-one-team-out experiments
as well as “take-one-team” experiments which rely on runs from a single team to
form the relevance data. Sanderson and Joho 18) have examined a “take-one-run”
approach, but they considered AP only, using data from TRECs 5-8. The present
study compares nine metrics, and our analysis covers recent TREC and NTCIR
data.

Most existing studies that compared metrics for evaluation with incomplete
data used random sampling from the original relevance data 1),2),11),16),22). For
example, Yilmaz and Aslam 22) used this approach to evaluate their proposed
metrics, including Induced AP which is exactly what we call AP′, and Inferred
AP which aims to estimate the true value of AP. An exception is the work by
Büttcher, et al. 5) which included leave-one-team-out experiments to address the
system bias issue. Their experiments covered a condensed-list version of preci-
sion at document cut-off 20 and RankEff 1). However, precision is an unreliable
metric 13), and RankEff is in fact as unreliable as bpref by definition 15).

Among the studies that used random sampling, Sakai 11) compared condensed-
list metrics such as AP′, Q′, nDCG′ and bpref along with traditional metrics,
using data sets from NTCIR. Sakai and Kando 16) repeated the experiments
using graded-relevance data from TREC and NTCIR, and added RBP to their
candidate metrics; they did not examine RBP′. The study showed that, under
very incomplete but unbiased conditions, AP′, Q′, nDCG′ are superior to AP,
Q, nDCG, bpref and RBP. In contrast, the present study shows that AP′, Q′,
nDCG′ are not necessarily superior to AP, Q, nDCG in the presence of system
bias or pool depth bias.

3. Formal Definitions of Metrics

3.1 AP, Q, nDCG and RBP
Let R denote the number of judged relevant documents. For any given ranked

list of documents, let I(r) be 1 if the document at rank r is relevant and 0
otherwise. Let C(r) =

∑
i≤r I(i). Then AP is defined as:
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AP =
1
R

∑
r

I(r)
C(r)

r
. (1)

Let L denote a relevance level, and let gain(L) denote the gain value for re-
trieving a judged L-relevant document. We follow the NTCIR tradition and let
L ∈ {S,A,B} 9). As for the TREC graded relevance data, we treat “highly rel-
evant” documents as S-relevant and “relevant” documents as B-relevant. We let
gain(S) = 3, gain(A) = 2 and gain(B) = 1 hereafter as Q and nDCG are robust
to the choice of gain values 13).

Let g(r) = gain(L) if the document at rank r is L-relevant and g(r) = 0
otherwise, i.e., if the document at rank r is either judged nonrelevant or unjudged.
The cumulative gain at rank r is given by cg(r) =

∑
1≤i≤r g(i). Consider an

ideal ranked list of documents, which satisfies g(r) > 0 for 1 ≤ r ≤ R and
g(r) ≤ g(r − 1) for r > 1. For NTCIR, listing up all S-, A- and B-relevant
documents in this order produces an ideal ranked output. Let cgI(r) denote the
cumulative gain of the ideal list. Q is defined as:

Q-measure =
1
R

∑
r

I(r)
C(r) + βcg(r)
r + βcgI(r)

(2)

where β is a parameter for reflecting the persistence of the user. Clearly, β = 0
reduces Q to AP; we let β = 1 throughout this paper.

Sakai and Robertson 17) have recently discussed a user model for AP and Q-
measure.

For a given logarithm base a, let the discounted gain at Rank r be dg(r) =
g(r)/ loga(r) for r > a and dg(r) = g(r) for r ≤ a. Similarly, let dgI(r) denote the
discounted gain for an ideal ranked list. nDCG at document cut-off l is defined
as:

nDCG l =
∑

1≤r≤l

dg(r)/
∑

1≤r≤l

dgI(r) . (3)

Throughout this paper, we let l = 1000 as it is known that small document cut-
offs hurt the stability of nDCG 13). This original definition of nDCG is “buggy” in
that a relevant document retrieved at rank 1 and one retrieved at rank a receive
the same credit. We adhere to the original nDCG but let a = 2 to alleviate the

effect of the bug. Other versions of nDCG are described elsewhere 4),8).
Let H denote the highest relevance level across all topics. In all of our exper-

iments, H = S. Let p be the persistence parameter that represents the fixed
probability that the user moves from a document at rank r to rank (r +1). RBP
is defined as:

RBP =
1 − p

gain(H)

∑
r

g(r)pr−1 . (4)

Moffat and Zobel 10) explored p = 0.5, 0.8, 0.95, and Sakai and Kando 16) showed
that p = 0.95 is the best choice among these three values in terms of system
ranking stability and discriminative power. Hence we use p = 0.95 thoughout
this paper. RBP is different from the other metrics considered in this paper
in that it totally disregards recall. Sakai and Kando 16) have pointed out some
weaknesses of this metric.

3.2 Bpref and Other Condensed-List Metrics
Sakai 11) showed that a family of metrics, which are existing metrics applied

to a condensed list of documents obtained by removing all unjudged documents
from the original list, are simpler and better solutions than bpref. Bpref itself
can be expressed as a metric based on a condensed list. Let r′ denote the rank
of a judged document in a condensed list, whose rank in the original list was
r(≥ r′). Let N denote the number of judged nonrelevant documents. For any
topic such that R ≤ N , bpref reduces to bpref R:

bpref R =
1
R

∑
r′

I(r′)
(

1 − min(R, r′ − C(r′))
R

)
. (5)

In fact, R ≤ N holds for every topic used in our experiments, and therefore bpref
is always bpref R. Whereas, for any topic such that R ≥ N , bpref reduces to
bpref N :

bpref N =
1
R

∑
r′

I(r′)
(

1 − r′ − C(r′)
N

)
. (6)

The only essential difference between bpref and AP applied to a condensed list,
which we call AP′, is that bpref lacks the top-heaviness property of AP. That
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is, bpref is more insensitive to change in top ranked documents than AP′ 11),16).
Note that, from Eq. (1), AP′ can be expressed as:

AP ′ =
1
R

∑
r′

I(r′)
(

1 − r′ − C(r′)
r′

)
. (7)

Condensed-list versions of Q, nDCG and RBP will be denoted by Q′, nDCG′

and RBP′. Thus this paper considers four metrics (AP, Q, nDCG and RBP) plus
five condensed-list metrics (AP′, Q′, nDCG′, RBP′ and bpref). Among these,
AP, AP′ and bpref cannot handle graded relevance.

4. Data

Table 1 provides some statistics of the TREC and NTCIR data we used for
evaluating the nine metrics. The “TREC03” and “TREC04” data are from the
TREC 2003 and 2004 robust track 19), and the “NTCIR-6J” (Japanese) and
“NTCIR-6C” (Chinese) data are from the NTCIR-6 CLIR task 9). The NTCIR-
6J and NTCIR-6C data contain a few teams that did not contribute any mono-
lingual runs, which we have excluded from our analysis. Hence we considered
only ten teams for both NTCIR-6J and NTCIR-6C.

Consider a particular topic. Let t denote a participating team, and let Dt

denote the set of documents contributed to the pool by this team. For TREC03,
for example, Dt is the union of the top 125 documents of each run submitted by t.

Table 1 TREC and NTCIR data used.

TREC03 TREC04 NTCIR-6J NTCIR-6C
#topics 50 49 50 50
#docs approx. 528,000 858,400 901,446
pool depth 125 100 100 100
average N 925.5 654.6 1157.9 999.4
range N [292, 2050] [132, 1371] [480, 2732] [414, 1907]
average R 33.2 41.2 95.3 88.1
range R [4, 115] [3, 161] [4, 311] [15, 400]
S-relevant 8.1 12.5 2.5 21.6
A-relevant — — 61.1 30.4
B-relevant 25.0 28.8 31.7 36.1
#all runs 78 110 74 46
#teams 16 14 10(12) 10(11)

The set of unique contributions by t is defined as Ut = Dt−∪t′ �=tDt′
�1. Similarly,

let Drel
t (⊆ Dt) denote the set of judged relevant documents obtained from t. The

set of unique relevant documents from t is defined as Urel
t = Drel

t − ∪t′ �=tD
rel
t′ .

Table 2 shows the participating teams that we used, along with the number
of runs submitted and average unique contributions/relevant documents. For
example, Table 2 (c) shows that “NICT” contributed 229.7 documents per topic
and 8 relevant documents per topic on average, and that this was achieved by

Table 2 Participating teams, #runs and #unique contributions per topic, and #unique rel-
evant documents per topic. †Not used for take-one-team experiments; ∗Used for
take-three-teams experiments (See Section 6).

(a) TREC03 #runs |Ut| |Urel
t | (b) TREC04 #runs |Ut| |Urel

t |
MU03rob 5 47.1 0.28 Juru 10 15.3 0.16
NLPR03∗† 5 5.1 0.06 NLPR04 11 6.2 0.04
SABIR03 3 24.1 0.18 SABIR04 6 16.2 0.76
Sel 5 16.9 0.04 apl04rs 5 15.0 0.16
THUIRr030∗ 5 9.0 0.14 fub04 10 8.4 0.24
UAmsT03R 5 31.0 0.16 humR04 10 23.2 0.33
UIUC03R∗ 5 11.1 0.06 icl04pos 9 42.9 0.53
VT 5 26.6 0.34 mpi04r† 10 62.7 0.41
aplrob03 5 15.0 0.24 pircRB04∗ 10 6.4 0.39
fub03I† 5 12.9 0.02 polyu 6 26.0 0.31
humR03 5 18.0 0.10 uic0401† 1 12.6 0.39
oce03 5 39.5 0.16 uogRob∗ 10 6.2 0.35
pircRB 5 30.6 0.54 vtum 8 9.5 0.18
rutcor03† 5 103.6 0.20 wdo 4 16.7 0.16
uic030† 5 22.6 0.26
uwmtCR 5 17.4 0.66

(c) NTCIR-6J #runs |Ut| |Urel
t | (d) NTCIR-6C #runs |Ut| |Urel

t |
BRKLY 8 64.8 1.6 BRKLY 8 166.8 3.56
HUM 5 120.6 1.04 CCNU∗ 2 12.9 1.22
JSCCL∗ 4 12.8 0.34 HUM 5 130.9 2.26
KLE 3 28.8 1.08 I2R∗ 4 22.3 0.94
NCUTW† 5 54.4 1.44 ISQUT† 3 82.8 0.92
NICT 20 229.7 8.00 NCUTW 5 25.4 0.96
OKSAT 5 65.9 1.60 NTNU† 4 32.9 0.86
TSB† 12 37.5 0.74 UniNE∗ 5 13.4 1.16
UniNE∗ 5 14.3 0.56 WTG 4 66.6 1.22
YLMS∗ 3 7.9 0.18 pircs 4 59.6 1.56

�1 For the NTCIR data, {t′} includes the teams that did not contribute any monolingual runs.
Whereas, t represents a team that contributed at least one monolingual run.
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1414 On the Robustness of Information Retrieval Metrics

submitting 20 runs.
Let J denote the complete set of judged documents for a topic. Section 5 reports

on our leave-one-team-out experiments which replace J with J − Ut for each t.
That is, unique contributions from t are removed from the original relevance data,
so that t can be treated as a “new” team. In Section 6, we go to the other extreme
and replace J with Dt. That is, runs from a single team are used for forming the
relevance data. In these “take-one-team” experiments, the teams labelled with
a “†” in Table 2 failed to contribute a relevant document (i.e., Drel

t = φ) for at
least one topic, and were therefore excluded from our analysis. In addition, we
chose three teams from each data set to conduct “take-three-teams” experiments,
by replacing J with ∪t∈T Dt, where T is the set of chosen teams. As indicated
by “∗”’s in Table 2, we chose three “ordinary” teams: ones with the smallest
number of unique contributions.

Table 3 Performance change and rank change when a run is evaluated using that team’s leave-one-team-out relevance data
(NTCIR-6J). A “+” indicates that a run is overestimated; a “−” indicates that it is underestimated. Rank changes are indicated
in bold: For example, “6↑5” means going up from rank 6 to rank 5. Note that the rows represent different relevance data.

AP′ Q′ nDCG′ RBP′ bpref AP Q nDCG RBP

BRKLY +1.93% +1.49% +0.42% +1.12% +2.39% −0.61% −0.51% −0.27% −0.34%
4→4 4→4 5→5 4→4 4→4 7→7 7→7 6↓8 4→4

HUM +2.04% +1.76% +0.59% +0.63% +2.34% −0.06% +0.03% +0.05% −0.16%
8→8 8→8 6↑5 8→8 8→8 9→9 8→8 5→5 8→8

JSCCL +0.85% +0.62% +0.21% +0.49% +1.28% −0.14% −0.11% −0.08% −0.04%
6→6 6→6 4→4 5→5 6↑4 5→5 5→5 4→4 5→5

KLE +1.03% +0.93% +0.37% +0.38% +1.13% 0.00% 0.00% −0.03% −0.42%
7→7 7↑6 7→7 6→6 7→7 6→6 6↓7 7↓8 6→6

NCUTW +1.64% +1.34% +0.54% +1.88% +2.14% −0.40% −0.38% −0.24% −0.39%
9↑8 9→9 9→9 9→9 9↑8 8↓9 9→9 9→9 9→9

NICT +3.76% +3.37% +1.33% +1.05% +3.60% +1.43% +1.41% +0.65% −0.08%
5↑4 5↑4 8→8 7→7 5↑4 4↓5 4↓5 8→8 7→7

OKSAT +6.13% +4.83% +1.81% +4.04% +6.48% −0.50% −0.30% −0.07% −0.47%
10→10 10→10 10→10 10→10 10→10 10→10 10→10 10→10 10→10

TSB +0.73% +0.59% +0.26% +0.35% +0.68% 0.00% −0.04% +0.01% −0.06%
1→1 1→1 1→1 1→1 1→1 1→1 1→1 1→1 1→1

UniNE +1.01% +0.77% +0.32% +0.73% +1.43% +0.08% +0.10% +0.02% −0.03%
3→3 3→3 2→2 3→3 3→3 3→3 3→3 2→2 3→3

YLMS +0.12% +0.07% 0.00% +0.07% +0.19% −0.08% −0.07% −0.08% 0.00%
2→2 2→2 3→3 2→2 2→2 2→2 2→2 3→3 2→2

For our pool depth bias experiments which we shall report in Section 7, we
formed “shallow pool” relevance data by taking the top pd ∈ {50, 10, 1} docu-
ments from every run for each data set.

To examine the effect of system bias and pool depth bias in terms of discrimina-
tive power and system ranking stability as measured by Kendall’s rank correlation
between two rankings based on two different relevance data sets 21), we randomly
selected one monolingual run per team for each data set. For example, for the
NTCIR-6J data, we randomly selected ten monolingual runs, each representing
a team.

5. System Bias: Leave One Team Out

Table 3 shows, for each t from NTCIR-6J, how a selected monolingual run
from t is affected when the original relevance data J is replaced by J − Ut. For
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example, when a run from “BRKLY” is evaluated using nDCG with this team’s
leave-one-team-out relevance data, the run’s score goes down by 0.27% (from
.5895 to .5879), and its rank among the 10 selected runs goes down from rank 6 to
rank 8. In contrast, when a run from “HUM” is evaluated using nDCG′ with this
team’s leave-one-team-out relevance data, the run’s score goes up by 0.59% (from
.5980 to .6015), and its rank a goes up from rank 6 to rank 5. It can be observed
that, according to condensed-list metrics, i.e., AP′, Q′, nDCG′, RBP′ and bpref,
the scores and the ranks tend to go up with the use of each leave-one-team-
out relevance data, while, according to traditional metrics, i.e., AP, Q, nDCG
and RBP, the scores and the ranks tend to go down. Moreover, the percentage
increase of the condensed-list metrics tend to be higher than the percentage
decrease of the traditional metrics. The trends are similar for TREC03, TREC04
and NTCIR-6C, but the tables are omitted due to space limitations. Hence, our
first observation is that condensed-list metrics overestimate new systems while
traditional metrics underestimate them, and that the overestimation tends to be
larger than the underestimation. A new run contains many unjudged documents.

Table 4 Performance change and rank change when a run is evaluated using that team’s take-one-team relevance data (NTCIR-
6J). A “+” indicates that a run is overestimated; a “−” indicates that it is underestimated. Rank changes are indicated in bold.
Note that the rows represent different relevance data.

AP′ Q′ nDCG′ RBP′ bpref AP Q nDCG RBP

BRKLY +21.0% +20.0% +6.65% 0.00% +18.6% +21.7% +19.6% +6.40% −0.11%
4↓8 4↓8 5↓7 4↓8 4↓8 7↑4 7↑4 6↑4 4→4

HUM +29.6% +28.8% +10.8% −0.04% +24.8% +31.8% +30.0% +11.0% −0.12%
8→8 8→8 6↑5 8→8 8↓9 9↑4 8↑4 5↑4 8↑5

JSCCL +28.6% +26.9% +10.2% 0.00% +25.4% +28.1% +25.8% +9.93% −0.11%
6↓7 6↓7 4→4 5↓7 6↓7 5↑2 5↑3 4→4 5↑4

KLE +26.4% +26.2% +9.73% 0.00% +21.6% +25.5% +24.5% +9.30% −0.15%
7↓8 7↓8 7→7 6↓8 7↓8 6↑3 6↑4 7↑4 6↑4

NICT +9.07% +8.97% +3.24% +0.04% +7.51% +6.97% +6.79% +2.65% 0.00%
5↓8 5↓8 8→8 7↓8 5↓8 4→4 4→4 8↑4 7↑6

OKSAT +45.8% +47.2% +23.0% 0.00% +36.2% +47.3% +47.1% +23.2% −0.05%
10→10 10→10 10→10 10→10 10→10 10↑7 10↑8 10↑9 10↑6

UniNE +24.8% +22.3% +7.03% 0.00% +22.9% +24.9% +21.9% +6.85% −0.10%
3→3 3→3 2→2 3→3 3→3 3↑2 3↑2 2→2 3↑2

YLMS +29.0% +26.4% +7.55% −0.07% +27.3% +31.1% +28.0% +7.89% −0.17%
2→2 2→2 3→3 2→2 2→2 2↑1 2↑1 3↑2 2↑1

Therefore, condensing its ranked list may move up the ranks of retrieved relevant
documents dramatically. This is why condensed-list metrics, including bpref,
overestimate new systems.

6. System Bias: Take One Team

The leave-one-team-out experiments replaced J with J − Ut. We now discuss
a more extreme case of system bias, by replacing J with Dt, the contributions
from a single team. As we have explained in Section 4, we also form relevance
data using contributions from three teams with the smallest number of unique
contributions.

Table 4 summarises our take-one-team results for NTCIR-6J in a way similar
to Table 3. Thus, for each team t, the table shows how a particular monolingual
run from t (the same run we used for the leave-one-team-out experiments) is af-
fected when the original relevance data J is replaced by Dt. For example, when a
run from “BRKLY” is evaluated using Q′ with this team’s contributions only, the
run goes down from rank 4 to rank 8. In contrast, when the same run is evaluated
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Table 5 Kendall’s rank correlation: the original ranking vs. take-one-team (average) / take-
three-teams.

AP′ Q′ nDCG′ RBP′ bpref AP Q nDCG RBP
TREC03
take-three-teams .950 .917 .900 .967 .933 .933 .933 .933 .967
take-one-team .951 .918 .929 .958 .944 .932 .920 .935 .947
TREC04
take-three-teams .978 .956 .978 .934 .956 1 1 .956 1
take-one-team .932 .936 .898 .903 .903 .906 .907 .860 .926
NTCIR-6J
take-three-teams .956 .911 .956 .867 .956 .822 .822 .956 .956
take-one-team .876 .880 .925 .893 .894 .756 .782 .885 .849
NTCIR-6C
take-three-teams 1 .956 1 .911 .956 1 1 1 1
take-one-team .960 .929 .991 .880 .920 .853 .867 .898 .907

using Q with this team’s contributions only, it goes up from rank 7 to rank 4. It
can be observed that, if a single team t is used for forming the relevance data,
the run score for t goes up for all metrics (except for RBP and RBP′); however,
while traditional metrics overestimate the rank of a run from t, condensed-list
metrics understimate it. Condensed-list metrics underestimate the rank of a run
from t because all the other runs from t′(�= t) are substantially overestimated :
These other runs are “new” to the take-one-team relevance data of t, and we
have already observed in Section 5 that condensed-list metrics overestimate new
runs. As for RBP and RBP′, replacing J with Dt does not substantially affect
the run score for t, because this merely turns some relevant documents below the
pool depth within that run, i.e., those that belong to J − Dt, into nonrelevant
documents. The stability of scores for RBP and RBP′ reflects the fact that they
totally disregard recall, and not necessarily that they are superior: Note that
the ranks according to RBP and RBP′ are altered just like the other metrics.
Similar results for TREC03, TREC04 and NTCIR-6C are omitted due to space
limitations.

Table 5 compares, for each data set and metric, the ranking of the aforemen-
tioned selected runs based on the original relevance data and that based on a
take-one-team / take-three-teams relevance data. The similarity between two
rankings is quantified using Kendall’s rank correlation, which would be 1 if the
two rankings are identical and −1 if the two rankings are the exact inverse of

each other. The rank correlation values for the take-one-team relevance data
have been averaged across teams. It can be observed that the correlation values
are generally very high. That is, it is possible to replace the original relevance
data with one that is based on a single team (or three teams) and still maintain
a similar system ranking. As mentioned in Section 2, this generalises a finding
by Sanderson and Joho 18) who considered only AP and binary-relevance TREC
data. However, obtaining a system ranking that is similar to the full relevance
data is not sufficient for sound evaluation: We later show that strong system bias
can introduce much noise in statistical significance tests.

Our main criterion for comparing metrics is Sakai’s discriminative power 12).
Let C be the set of all run pairs that are being considered. For a given signifi-
cance level α, let C∗(⊆ C) be the set of run pairs with a statistically significant
performance difference in terms of a given metric according to a two-sided, paired
bootstrap hypothesis test 6). Then discriminative power is defined as |C∗|/|C|: It
means how often a metric manages to detect a statistically significant difference
for a given probability of Type I Error. Although |C∗|/|C| can also be defined
using a significance test other than the bootstrap test, one of the advantages
of Sakai’s method is that it can also estimate the minimum performance dif-
ference required to achieve statistical significance. More details can be found
elsewhere 12).

Suppose that C∗ was obtained using a given metric and the original relevance
data. Now, let C ′

∗ denote the set of pairs of runs with a statistically significant
difference in terms of the same metric but with a different relevance data set.
Assuming that the results based on the original relevance data are the ground
truth, we can quantify the discrepancy between C∗ and C ′

∗ by reporting the
number of misses |C∗ − C ′

∗| and that of false alarms |C ′
∗ − C∗|.

Table 6 and Table 7 summarise the results of our discriminative power ex-
periments using α = 0.05 with the take-one-team and take-three-teams relevance
data. For example, given the TREC03 full relevance data, Q detects a statisti-
cally significant difference at α = 0.05 for 80 run pairs out of 120 (66.7%), and
this is the highest discriminative power achieved across all metrics, as indicated
in bold. Moreover, given the 50 topics of TREC03, the performance difference
required to reach significance is around 0.07 in Q. Whereas, the TREC03 take-
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Table 6 Discriminative power at α = 0.05: take one team / three teams (TREC). For each
experimental condition, the highest discriminative power is indicated in bold.

AP′ Q′ nDCG′ RBP′ bpref AP Q nDCG RBP

TREC03 full relevance data: discriminative power and the estimated difference required

77/120 77/120 71/120 55/120 69/120 77/120 80/120 71/120 55/120
=64.2% =64.2% =59.2% =45.8% =57.5% =64.2% =66.7% =59.2% =45.8%

0.09 0.07 0.08 0.04 0.08 0.07 0.07 0.08 0.04

TREC03 take-three-teams: discriminative power, misses and false alarms

61.7% 62.5% 55.0% 42.5% 55.8% 67.5% 68.3% 63.3% 49.2%
5 6 8 8 3 2 2 2 1
2 4 3 4 1 6 4 7 5

TREC03 take-one-team: discriminative power, misses and false alarms (averaged)

59.6% 59.0% 54.4% 43.1% 51.7% 66.4% 67.6% 61.6% 52.6%
8.42 9.50 8.92 9.25 8.83 5.67 5.50 4.67 3.17
2.92 3.33 3.17 6.00 1.83 8.33 6.58 7.58 11.25

TREC04 full relevance data: discriminative power and the estimated difference required

61/91 62/91 58/91 46/91 57/9 61/91 63/91 58/91 45/91
=67.0% =68.1% =63.7% =50.5% =62.6% =67.0% =69.2% =63.7% =49.5%

0.07 0.08 0.09 0.05 0.09 0.07 0.08 0.08 0.05

TREC04 take-three-teams: discriminative power, misses and false alarms

63.7% 65.9% 56.0% 40.7% 54.9% 69.2% 70.3% 61.5% 48.4%
3 2 7 10 8 0 0 2 1
0 0 0 1 1 2 1 0 0

TREC04 take-one-team: discriminative power, misses and false alarms (averaged)

61.6% 62.3% 53.5% 45.9% 56.4% 64.4% 67.0% 59.7% 50.1%
7.92 7.00 11.50 9.00 9.67 7.17 7.00 7.50 3.75
3.00 1.75 2.25 4.75 4.00 4.83 5.00 3.83 4.33

three-teams relevance data superficially raises the discriminative power of Q to
68.3%, but this is due to 2 misses and 4 false alarms. The corresponding dis-
criminative power of Q, averaged across the 12 take-one-team relevance data, is
67.6%.

According to these tables, take-one-team relevance data generally yield more
misses and false alarms than take-three-teams relevance data. Hence we observe
that, even though take-one-team relevance data may produce a system ranking
that is very similar to that produced by the original relevance data, pooling runs
from several teams is better than pooling runs from a single team for obtaining
reliable conclusions based on statistical significance tests. The focus of this study,
however, is on the comparison of different metrics under the same condition,

Table 7 Discriminative power at α = 0.05: take one team / three teams (NTCIR). For each
experimental condition, the highest discriminative power is indicated in bold.

AP′ Q′ nDCG′ RBP′ bpref AP Q nDCG RBP

NTCIR-6J full relevance data: discriminative power and the estimated difference required

25/45 28/45 33/45 26/45 23/45 26/45 28/45 33/45 26/45
=55.6% =62.2% =73.3% =57.8% =51.1% =57.8% =62.2% =73.3% =57.8%

0.07 0.09 0.08 0.04 0.08 0.08 0.07 0.08 0.05

NTCIR-6J take-three-teams: discriminative power, misses and false alarms

57.8% 64.4 71.1% 42.2% 44.4% 66.7% 68.9% 71.1% 62.2%
1 1 1 7 3 2 1 1 0
2 2 0 0 0 6 4 0 2

NTCIR-6J take-one-team: discriminative power, misses and false alarms (averaged)

61.9% 66.7% 66.1% 49.2% 50.6% 66.4% 67.2% 67.8% 61.4%
1.00 1.13 3.38 5.13 3.00 4.13 4.25 4.25 3.50
3.88 3.13 0.13 1.25 2.75 8.00 6.50 1.75 5.13

NTCIR-6C full relevance data: discriminative power and the estimated difference required

36/45 34/45 34/45 32/45 34/45 37/45 36/45 34/45 32/45
=80.0% =75.6% =75.6% =71.1% =75.6% =82.2% =80.0% =75.6% =71.1%

0.07 0.06 0.07 0.07 0.07 0.08 0.07 0.08 0.06

NTCIR-6C take-three-teams: discriminative power, misses and false alarms

71.1% 73.3% 75.6% 66.7% 64.4% 82.2% 80.0% 77.8% 77.8%
4 1 0 2 5 0 0 0 0
0 0 0 0 0 0 0 1 3

NTCIR-6C take-one-team: discriminative power, misses and false alarms (averaged)

73.9% 75.0% 71.1% 72.5% 70.3% 80.3% 79.7% 75.0% 75.0%
3.00 1.50 2.13 2.25 4.25 3.63 3.38 2.63 2.00
0.25 1.25 0.13 2.88 1.88 2.75 3.25 2.38 3.75

and not on how many and what kind of teams are required to obtain reliable
conclusions.

The tables also show that AP, Q and nDCG are generally more discriminative
than AP′, Q′ and nDCG′, respectively, even with take-one-team or take-three-
teams relevance data. For example, for TREC03, the discriminative power of Q
averaged over 12 take-one-team relevance data is 67.6% while the corresponding
value for Q′ is only 59.0%, even though the number of misses and that of false
alarms are more or less comparable. Thus, condensed-list metrics are not neces-
sarily superior to traditional metrics when the relevance data are heavily biased
towards one team or a few teams. On the other hand, even with take-three-
teams and take-one-team relevance data, it can be observed that AP′ and Q′ are
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generally more discriminative than bpref, RBP and RBP′.

7. Pool Depth Bias

We finally examine the effect of pool depth bias on IR metrics. As mentioned
in Section 4, we examined pool depths 50,10 and 1. Table 8 shows the Kendall’s
rank correlation values between the original ranking and a shallow-pool ranking.
For example, when the original relevance data of TREC03 is replaced by that
formed with a pool depth of 1, the rank correlation between the original system
ranking and the new system ranking both according to AP′ is .717. It can be
observed that reducing the pool depth does hurt the system ranking, but the
differences across metrics are not clear from this table.

Table 9 and Table 10 compare the robustness of metrics to pool depth bias
in terms of discriminative power. For example, using the pool-depth-50 relevance
data of TREC03, Q is the most discriminative among the nine metrics, and its
discriminative power is 66.7%, which is the same as that using the full relevance
data (pool-depth-125). Since there are no misses and false alarms in this case,
the pool-depth-50 relevance data and the full relevance data yield identical sig-
nificance test results in terms of Q. Furthermore, Q maintains relatively high

Table 8 Kendall’s rank correlation: the original vs. shallow-pool rankings

AP′ Q′ nDCG′ RBP′ bpref AP Q nDCG RBP

TREC03 (original pd = 125); ranking 16 runs

pd = 50 1 .950 .967 1 .983 .967 .967 .983 1
pd = 10 .933 .850 .900 .883 .917 .883 .867 .900 .950
pd = 1 .717 .700 .800 .800 .817 .667 .650 .750 .750

TREC04 (original pd = 100); ranking 14 runs

pd = 50 1 1 1 1 1 .978 1 .978 1
pd = 10 .978 .978 .890 .956 .956 .868 .912 .846 1
pd = 1 .846 .780 .846 .692 .846 .736 .802 .626 .780

NTCIR-6J (original pd = 100); ranking 10 runs

pd = 50 1 1 .956 1 .956 .911 1 .956 1
pd = 10 .911 .911 .956 1 .867 .867 .911 .956 .867
pd = 1 .644 .689 .733 .644 .689 .511 .600 .867 .689

NTCIR-6C (original pd = 100); ranking 10 runs

pd = 50 1 1 1 1 1 1 1 1 1
pd = 10 1 .911 .956 .911 1 .956 .956 1 1
pd = 1 .911 .911 .956 .822 .911 .778 .867 .867 .822

discriminative power even with shallow pools. More generally, however, the dis-
criminative power of metrics goes down as the pool depth is reduced, and the
number of misses and false alarms increases. Moreover, it can be observed that,
in the presence of pool depth bias, AP′, Q′ and nDCG′ are not necessarily supe-
rior to AP, Q and nDCG in terms of discriminative power. For example, at pool
depth 10 for TREC03, the discriminative power of Q is 68.3% (with seven missses
and nine false alarms), while that of Q′ is only 58.3% (with seven misses and six
false alarms). Nevertheless, it can be observed that AP′ and Q′ are generally

Table 9 Discriminative power at α = 0.05: shallow pools. High values are shown in bold
(TREC).

AP′ Q′ nDCG′ RBP′ bpref AP Q nDCG RBP

TREC03 full relevance data (pd = 125): discriminative power

64.2% 64.2% 59.2% 45.8% 57.5% 64.2% 66.7% 59.2% 45.8%

TREC03 pd = 50: discriminative power, misses and false alarms

64.2% 64.2% 59.2% 46.7% 55.8% 64.2% 66.7% 60.0% 47.5%
1 1 2 0 3 1 0 2 0
1 1 2 1 1 1 0 3 2

TREC03 pd = 10: discriminative power, misses and false alarms

60.8% 58.3% 58.3% 36.7% 54.2% 63.3% 68.3% 59.2% 46.7%
11 12 7 16 9 9 7 6 5
7 5 6 5 5 8 9 6 6

TREC03 pd = 1: discriminative power, misses and false alarms

36.7% 37.5% 36.7% 10.8% 30.8% 40.8% 41.7% 40.0% 15.8%
43 43 39 43 39 42 46 38 37
10 11 12 1 7 14 16 15 1

TREC04 full relevance data (pd = 125): discriminative power

67.0% 68.1% 63.7% 50.5% 62.6% 67.0% 69.2% 63.7% 49.5%

TREC04 pd = 50: discriminative power, misses and false alarms

67.0% 67.0% 59.3% 49.5% 60.4% 69.2% 69.2% 60.4% 49.5%
1 1 4 1 2 0 1 3 0
1 0 0 0 0 2 1 0 0

TREC04 pd = 10: discriminative power, misses and false alarms

60.4% 60.4% 56.0% 44.0% 57.1% 63.7% 65.9% 58.2% 46.2%
7 8 10 6 7 7 7 7 4
1 1 3 0 2 4 4 2 1

TREC04 pd = 1: discriminative power, misses and false alarms

40.7% 40.7% 34.1% 0.0% 38.5% 48.4% 49.5% 46.2% 0.0%
27 29 29 46 28 28 29 25 45
3 4 2 0 6 11 11 9 0

IPSJ Journal Vol. 50 No. 4 1410–1420 (Apr. 2009) c© 2009 Information Processing Society of Japan



1419 On the Robustness of Information Retrieval Metrics

Table 10 Discriminative power at α = 0.05: shallow pools. High values are shown in bold
(NTCIR).

AP′ Q′ nDCG′ RBP′ bpref AP Q nDCG RBP

NTCIR-6J full relevance data (pd = 125): discriminative power

55.6% 62.2% 73.3% 57.8% 51.1% 57.8% 62.2% 73.3% 57.8%

NTCIR-6J pd = 50: discriminative power, misses and false alarms

60.0% 64.4% 71.1% 57.8% 53.3% 60.0% 66.7% 73.3% 57.8%
1 1 1 0 0 0 0 0 0
3 2 0 0 1 1 2 0 0

NTCIR-6J pd = 10: discriminative power, misses and false alarms

71.1% 71.1% 64.4% 57.8% 57.8% 64.4% 66.7% 71.1% 62.2%
0 1 4 1 1 3 2 2 1
7 5 0 1 4 6 4 1 3

NTCIR-6J pd = 1: discriminative power, misses and false alarms

57.8% 62.2% 57.8% 53.3% 44.4% 60.0% 64.4% 62.2% 66.7%
6 5 7 5 9 9 9 9 6
7 5 0 3 6 10 10 4 10

NTCIR-6C full relevance data (pd = 125): discriminative power

80.0% 75.6% 75.6% 71.1% 75.6% 82.2% 80.0% 75.6% 71.1%

NTCIR-6C pd = 50: discriminative power, misses and false alarms

80.0% 75.6% 75.6% 71.1% 71.1% 82.2% 80.0% 75.6% 71.1%
0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0

NTCIR-6C pd = 10: discriminative power, misses and false alarms

80.0% 75.6% 71.1% 73.3% 71.1% 77.8% 77.8% 71.1% 73.3%
1 1 2 0 3 2 2 2 1
1 1 0 1 1 0 1 0 2

NTCIR-6C pd = 1: discriminative power, misses and false alarms

66.7% 66.7% 62.2% 55.6% 55.6% 60.0% 66.7% 60.0% 60.0%
7 5 7 7 9 11 6 8 6
1 1 1 0 0 1 0 1 1

more discriminative than bpref, RBP and RBP′ in the presence of pool depth
bias.

8. Conclusions and Future Work

Several recent studies discussed the effect of incomplete relevance data
in retrieval evaluation using random samples of the original relevance
data 1),2),11),16),22). They discussed neither system bias nor pool depth bias. How-
ever, in reality, relevance data formed through pooling are never a random sample

of the full relevance data. In light of this, we examined the effect of system bias
and that of pool depth bias on IR metrics. Even though previous studies 11),16)

showed that AP′, Q′ and nDCG′ are effective for handling very incomplete but
unbiased data, we showed that they are not necessarily effective in the pres-
ence of these biases. Using data from both TREC and NTCIR, we first showed
that condensed-list metrics overestimate new systems while traditional metrics
underestimate them, and that the overestimation tends to be larger than the
underestimation. We then showed that, when relevance data are heavily biased
towards a single team or a few teams, AP′, Q′ and nDCG′ are not necessarily
superior to AP, Q and nDCG in terms of discriminative power. Moreover, we
showed that AP′, Q′ and nDCG′ are not advantageous in the presence of pool
depth bias either. Hence previous studies that used random sampling should be
interpreted with caution. Nevertheless, AP′ and Q′ are generally more discrimi-
native than bpref, RBP and RBP′ in the presence of system bias and pool depth
bias. Hence we maintain that AP′ and Q′ are better solutions than bpref, RBP
and RBP′ to the problem of incompleteness and bias.

Traditional metrics assume that retrieved unjudged documents are nonrelevant,
while condensed-list metrics, including bpref, assume that they are nonexistent.
In essence, the present study showed that the latter assumption is no better
than the former when the number of pooled systems or the number of pooled
documents is small. In our future work, we would like to couple efficient and
reliable test construction methods with reliable graded-relevance metrics. We
also plan to establish quantitative criteria for choosing good evaluation metrics:
Although discriminative power is probably one important criterion, there are
probably other aspects that need to be examined, including the ability to predict
the system ranking according to an intuitive metric such as precision-at-ten, given
a set of new topics 20).
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5) Büttcher, S., et al.: Reliable Information Retrieval Evaluation with Incomplete
and Biased Judgements, Proc. ACM SIGIR 2007, pp.63–70 (2007).

6) Efron, B. and Tibshirani, R.: An Introduction to the Bootstrap, Chapman &
Hall/CRC (1993).
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