On Block Operations Using Delay Lines

MAMORU HOSAKA*

1. Introduction

In designing a small scale computer, serial operation, serial memory,
and slow clock rate are often selected, because cost is limited and stable
operation with easy maintenance is most desirable. Consequently its
large access time and low operation speed make it difficult to get good
point in performance vs. cost ratio, compared to large scale computers
with random access memory and parallel high speed operations. However,
small scale computers are useful in those area where problems to be
solved are not so large and not complicated, that solutions can be ob-
tained within reasonable time.

Usually one of objectives for use of automatic computers is to solve
problems which are not small and occur frequently in research, design
and data processing works. As most of those problems fall in limited
number of categories, small scale computers provided with special devices
for only such categories can be effectively used. Thus problems so for
given up to try with them will become to be solved. For example, those
which include large scale vector or matrix computations, sorting or
frequent table lookup operations, are the cases, in which there need great
quantities of data manipulations and iterations of operations. In stored
program computers, iteration techniques have to be used as much as
possible to make programs short, but if address modification, counting
and other book-keeping operations are too many, comparing to amounts
of pure data monipulation, overall processing time will be longer.
On the contrary if the rate of bookkeeping operations are small, pro-
cessing time will not increase without build-in index registers and other
bookkeeping facilities.

For address modification even with build-in mechanisms, it is necessary
to arrange data in regular order by some means. To process one of
these data, a command is read from memory, modified, decoded, executed,
and data is read from memory, manipulated, number of times counted,
its limit detected, and program branched. If data manipulation is simple,
these red tape operations make processing time longer and programing
cumbersome. If one build-in command can work on all the specified data
regularly addressed, without using subroutines, high speed processing as
well as easy programming can be attained. These operations which work

* Aeronautical Research Ir;s%{fute, Univ. of Tokyo
51

52 M. HOSAKA

on a group of data are called block operations.

In order to do efficient block operations, data are to be read, processed
and stored back to memory without data flow interruption. For this
purpose, delay line type memories are most suited, in which data are
circulating with regeneration. By connecting delay lines with logical
circuits in between for specified flow time, a group of data are trans-
ferred, being processed automatically.

In recent developed large scale computers, bookkeeping or red tape
operations are designed to be executed concurrent with main processing
routines. Block operations stated here is not executed in such a way,
but a group of data located in contiguous positions are processed faster
by one command, without using too much hardwares.

Any type of delay lines can be used in block operations, but so far the
author used those of magnetic drum type successfully in the Seat Re-
servation System of Japan National Railways and in the speed up device
attached to the Bendix G-15 computer at the Railway Reserch Laboratory
of Japan National Railways. In the former, block operations are con-
sidered in searching with priority for required seat position pattern and
updating of the seat file, whose reports were already published®™. In
the latter, many restrictions were imposed in order to connect to the
existing computer, but its speed for group data manipulations raised as
high as hundreds times. In this paper the design of the latter case is
deseribed.

2. Structure of the Device and the Formats of Data and Commands.

Main parts of the device consist of delay lines and registers as shown
in Fig. 1. Delay lines L’s are of n word length, line A one word length
and line B two word length. Line N contains % words in each of which
there is numbers showing the word time or word address of the cor-
responding location in the line L’s. Line I” is used for determining the
word time duration in which block operation continues. Contents of the
line I'" is supplied from the address part of a command. And there are
two one-word registers E and F which are made of flip-flops, constituting
shift registers. IG,, IG, and IG, are inverting gates whose function are
to convert numbers i.e. from the normal form (sign plus absolute value)
to the addition form (sign plus 2’s complement, if negative) or vise
versa, to change sign, to take absolute value, to detect zero, to separate
exponent and mantissa of floating point numbers, and when IG’s are not
used these ways, their flip-flops are used for one bit storages. The
schematic circuit of IG’s is shown in Fig. 2. By commands, data read
from one of delay lines are transferred to one of destination lines or
registers, via early bus EB,, inverting gate IG, (i=0, 1, 2), appropriate

ON BLOCK OPERATIONS USING DELAY LINES 53

Command register "

1G,
(= [
GF /
—- © L
!
LB B, EB, EB,

Fic. 1. Schematic diagram

o+~

@
ﬂ) . -

13,
EB % EB—]
©O—_J
_/

EB—>

o N

Fic. 2. Example of inverting gate

logical circuits and late bus LB. During transfer process, data are
manipulated by gates which are controled by a command. The function
of command is to set the data flow paths and to determine the time
interval to flow the data in the selected paths. E, and F, are usually
sign bit flip-flops of E and F registers, the flig-flop IP indicates sign of

54 M. HOSAKA

product in the line B. The flip-flop GF' is primarily used for the control
of shift in £ and F register. Otherwise these flip-flops are utilized for
one bit storages.

Numerical data of single precision are expressed by one word of 29
bit length, double precision is of 58 bit length which occupies two con-
secutive even and odd addresses. The right most bit of numerical data
indicates sign which is read from a delay line at first bit time ¢, In a
floating poit number, left 20 bits are used for mantissa, next 8 bits are
for exponent (excess 27 expression) last one bit indicates sign (Fig. 3).

m.S.b 1.8.b
s L] 1]
ta #,(Sign)
Double I | I H
T
0dd 6 e Even t,(Sign)
Floating point I l
“—Sign
Mantissa Exponent

Fic. 3. Stracture of word

These data circulate serially in delay lines, flowing with sign bit first
and most significent bit last. The time interval of one word length is
indicated by a word time which consists of 29 bit time iy, ty, - - -, &
In a single precision word, at the bit time ¢,, sign bit is read, at t.
most significant bit read, in a double precision word, ¢, (¢, of even word
time) is sign bit time. In a floating point number of single length, ex-
ponent emerges at bit times, f.., ((;~%,) and mantissa at bit times ¢y,
(tio~ts). Timing signals are generated from the line N and the counters.

In block operation commands, at least next items have to be specified,
except (d). (a) type of operation (OP code). (b) line numbers of data
source and destination. (c) address of first data and word length of
block data. (d) next command address. OP code is the static part of
a command, which determines the data paths from a source to a destina-
tion line via a certain bus and logical circuits. The time interval for
flowing data is determined by the information in item (c) as follows.
If the word time when the first data to be processed come from a source
line is T and the group data length is n words, ¢,=7T,+T+1, c;=7+1
are written in the line I at the command read time T, T,--1 is ob-
tained from the output of the line N. Then, one is added into ¢, part
in I" each word time, generating overflow at the word time T—1, by
which the transfer gates of the selected data paths are opened from the
begihning of word time 7. Just as the same way, one is added to ¢.

ON BLOCK OPERATIONS USING DELAY LINES 55

part in the line /" from the word time 7T, then the overflow pulse at the
word time T+4mn—1 cause the transfer gates closed. The timing relation
between the command read time and the data transfer times is shown
in Fig. 4.

| T | 755 <t
| 1 !
i 1 1
¥ n wt -] 54—,1
Transfer time Command read time

Fi6. 4. Command read time and its execution time

3. Types of Block Operation.

To what extent block operations are build-in as hardwares is to be
determined by performance to cost ratio, and frequency of their use.
Considering this problem, the author constructed block operation circuits
as shown next with not too much components used. Now L, L} etc.
indicate a word located at address ¢ of delay lines L and L’ ete. If the
recirculation period of a delay line is p word times, 7 is replaced by the
remainder of ¢ devided by ».

(I) Copy operations

(a) Simple copy: L,—~Li,

(b) Delayed copy: L,—~>L}.,, L;.,,—~Lj.. etc.

(e¢) Inverted copy: (—1) L,—~Lj

(d) Absolute value copy: |L;|—>Li

(e) Negative number elimination copy: If L, is negative value,

copyed values are set to zero, otherwise simple copy.

These copy operations works on a word group of single or double
precision.

(II) Summation

>L—~A, >L,;..—>B

(III) Vector addition or subtraction
L= Li—~L, Li,i-1iL£,i+1_>L£{+2,z+3

(IV) Multiplication

(a) Block multiplication (double): L,X Li—~L\ ., (¢=o0dd)

(b) Block multiplication (single): L,X L{—L7,,

(e) Inner product (double): }; L,xL;~B

(d) A"X B—>B (double)

(e) AB—>L, A*B—>L, . -+, A"B->L,..,_1,, single product (i=odd)
(V) Floating point addition and summation

(a) A+E—E

56 M. HOSAKA

(b) ; L,~KE

(VI) Floating point multiplication

(a) LyXLi~Lily

(b) AXB—-B, A*XB—B

(¢) AB—L, A*B—>L,y, -+, A"B—>L, 441
(VII) Selection

(a) max |[L|=L,~E;k of L,~A

(b) first non zero L,=L,—~FE;k of L,—~A, set L,=0 in L
(VIII) Miscellaneous

(a) L,;-B—L,,., (extract)

(b) L,x2-L, (left shift)

(¢) L,x1/2—L,,, (right shift)

(d) L;;.;—~L,., (double single)

4. Data Flow and Control in the Block Operations.

(I) In the copy operation, the data path opens from the source line
to the destination lines via the ealy bus EB, the inverting gate IG,
and the late bus LB. In the transfer time, the recirculation of the
destination line is stopped and the source data are copyed into it with-
out delay. In the delayed copy, the data path includes the other delay
line so that the word time of copyed data are delayed, i.e. suffix ¢ in-
creases. When the recirculation periods of the source and destination
lines are different, copyed location numbers are shifted in each recircula-
tion, accordingly the block shift operation is possible. In the operation,
1), (), and (I,), data are converted by the gates of IG, to the appro-
piate form.

(II) In the summation operation, data from L go to the augend entry
of the full adder F'A4, via the early bus KB, and the inverting gate IG,
where numbers are converted to adding form, that is, negative number
is expressed in 2’s complement and sign bit. While the partial sum in
the line 4 goes to the addend entry of full adder F'4, and the sum goes
to the line A as shown in Fig. 5. If the end around carry occurs, the
sign of the sum is corrected by the action of carry flip-flop CF, of FA4,

L —> IG, > (d)

{—r (w)

FAy(S) F——> E

Summation

Fic. 5. Summation

ON BLOCK OPERATIONS USING DELAY LINES 57

at the bit time ¢, of the next word time. If the data transfer time
continues, data from L go to F'A, consequently their summation is pro-
duced in the line A. When overflow occurs, the overflow indicator is
set. When double length words are summed, the line B is used insted
of the line A.

(III) In the vector addition and subtraction, components of the two
vectors are located in the word time positions of line L and L’. Data
from line L and from line L’ go to the full adder FA, via EB,, IG,
and EB,, IG, respectively, while their component sum goes to the line
L via the line A and IG, as shown in Fig. 6. At the exit of the line

1G4 FAy
L @ TGy

o {1
L’ ———>{ I——>(u) Line A L

IGp

Correction of end

Oﬁ around carry

CFg

FIG. 6. Vector addition

A, one word time later from the out put of FA, the sign of the sum
are corrected by the end around carry at FA4, IG, is used for the
conversion to the normal from (absolute value and sign). The overflow
of the components sum is detected by IG,, IG, and FA,, setting the
overflow indicator.

(IV) Before entering the multiplication operation, the structure of the
registers E and F' must be understood. These registers are made of the
static flip-flops Ey, Eu, -+, By and Fy, Fy, -+ -, F1. In F register, full
adders FA,, FA,, ---, FA, are inserted every two flip-flops as shown in
Fig. 8, so that numbers can be added sierially at shifted positions into

E23 E28 Ey EQ EZ E1

| —
Reversible counter

FA‘B FA12 FAZ FA’|
‘ () L)
F O~OtO-Ofas-O-0O- OO0 FO-O| O
Fao Fog Fp Fag Fos P Fas Fa Fs R Fq

FiGg. 7. E and F register

58 M. HOSAKA
Multiplicand
—tnH———- "t ——— —— 2 times
' —r—]-————- 3 times
L -1
4 P l

FAg

©-0-+ [0-0-+ |—

Adder
Fic. 8. Multiplication

the right shifting content of F' register. Data in E and F can be shifted
right. In E,y~F,, left shift is also possible and E,~E; are used fre-
quently as the reversible counter. The least significant flip-flops E; and
F, store sign bit, otherwise they are used for one bit stroges in the
course of operations. Most functions of E and F registers are provided
for the floating point arithemtic.

Multiplication takes two word times which are denoted by phase 1, ¢,,
and phase 2, ¢,. In ¢,, the multiplier in L goes to the register £ via
EB,, IG,, where its absolute value is taken, while the absolute value of
multiplicand from L enters into the line A, the sign of the product is
set in E, at the bit time ¢,. At the end of ¢,, the multiplier is in Ej;y~
E, and the multiplicand in the line A.

In ¢, the each quaternery digit (which are made of consecutive two
binary digits, making fourteen quadriary digits.) in the register E, selects
one of zero, one, two, and three times of the multiplicand according to
the quaternery number zero, one, two, and three, and add it through
the full adders F'A; (j=1~18), which corresponds to the quaternery digit
position from the right, to the shifting F' register (when j=14, Fy, is
used instead of FA,,). The multiple values of the multiplicand are made
by the full adder F'A, and one bit delay when it comes from the line A.
The two word length product are thus produced at the time from #,- ¢,
to the next t,-¢, and sent to the destination line L with the product
sign bit stored at E, attached at the bit time ¢;-¢,, When the products
are sent to the line B via EB,, IG, and the full adder F'A,, connected to
the line B, then the inner product is made in the line B just as the same
process in (II). If the sign bit is sent at bit time ¢,-¢, and the product
is send to the line L from ¢,-¢, to t,-¢,, the single precision products
are obtained. These operations are the explanation of the ecases (IVa)
(IVb) and (IVe).

In (IVd), the multiplicand is placed in the line A, the multiplier in the
line B and its sign in IP flip-flop. After the multiplication transfer time
of two word length, by. almost the same process stated above, the

ON BLOCK OPERATIONS USING DELAY LINES 59

product is made in the line B, its sign is in IP flip-flop, the line A re-
circurate unaltered, so that when the transfer time continues 2n word
times, A"XB is produced in the line B with the sign in IP. During
this process A‘X B’s can be copied into the line L in single length form,
this is the case (IVe).

(V) In the floating point addition and subtraction, the operation is
divided into the four phases ¢;, &, ¢;, and ¢, each of which takes one
word time. A floating point number is expressed by (z, &), where x is its
mantissa and & its exponent. Also (¥, 7) is another floating point number.
When floating numbers pass through the inverting gates, only manrissa
parts are subject to their control and exponent parts are extracted.

In the case (Va), an augend is in E register. its mantissa being in
addition form (2, &) i.e. 2’s complement if negative, and an addend is in
the line A4 in the normal form (v, 7). In phase one, ¢;, (¥,7) comes from
the line 4 to IG, via EB,, where y is converted to the addition form
y' and 7, separated from (y', 1), goes to the augend terminal of full adder
FA, At the same time ¢ in E,~F, goes to its addend terminal, making
their sum 7+¢& which goes into E,~E, and & is transferred into Fy~F,.
At the bit time t, of ¢; (t,o-9,), the carry flip-flop CF, of FA, shows
magnitude comparison of & and %, that is,

If CF,=1: &>y, Eg~FE,=¢—7—1

If CE,=0: ¢=y, E,~E,=7—¢
The condition of CF, is hold to the end of this phase. (¥, 7 from IG,
enters into F' register, shifting from Fy, to the right, its sign is set in
F, at the bit time t,. At the bit time ¢, of ¢,, whether 7;,, which is
now in F,~F,, is allowed to proceed into Fy~F,, is determind by the
condition of CF, so as to leave the greater exponent in Fy~F,. At the
end of phase 1, ¢;, data in E and F registers are as follows,

E,,~E, =2, E~E,=t+7%, E,=sign of x

Foo~Fyy=y', Fy~F,=¢& or 5, which is greater, F,=sign of y
as shown in Fig. 9.

In the phase two, the mantissa with smaller exponent is shifted right

(x) | (¢) o
E [J e E, "Sign of "
x
N\ Fhg
CF,
S O | O
y'fz S Fl
y7? ? — Qor'rz Fy

FIG. 9. ¢, of floating point addition

60 M. HOSAKA

to equalize exponents of the augend and the addend. Bits supplied from
the left side in shift operation depend on the sign bit in £, or F, and
the number of shifting bit times is determined by on-time of the flip-
flop GF controlled by the reversible counter E,~FE,. When the carry
flip-flop CF,=0, the shift control flip-flop GF is set at the bit time ¢, - ¢.,
and reset by the overflow pulse of the reversible counter, which counts
n—& bit shifts of Fp~F;,. When CF,=1, GF'is set at {y-¢; and reset
by the underflow pulse of the reversible counter which counts &—» bit
shifts of F,y~F,,. In both cases, if GF' is on more than twenty bit
times, the corresponding mantissa in £ or F' is made zero. At the end
of the second phase, both mantissas are in E,~FE,, and Fy~F,, the ex-
ponent in Fy~F,, sign in E, and F,; as shown in Fig. 10.

Counter ;
,:[_
+1

Oer

I | O

§or7

y—>

Fic. 10. ¢.

In the phase three ¢;, ' and ¥’ with the same exponent are added
by passing the full adder F'4, and the sum of 21 bits goes to E,~FE,,
F, and its sign to E,, via EB,, IG,, where the test is made if the sum
is in 2’s complement form of 1—2-"=111...100---0 with negative sign.
If this is the case, the special normalizing is made at ¢,. In bit times
(t,~ts) ¢, the exponent in Fy~F, is transferred to E,~FE, Flow paths
in ¢, are shown in Fig. 11.

In the phase four, the result is to be normalized. The number in
E,y~E,, and F, is shifted each bit time to the left until one is set in
E,, if E,=0, or until zero is set in K, in the special normalizing case,
otherwise until 0 is entered in FE, if E,=1. The special case ocurrs
because the negative number is expressed in 2’s complement form when
normalizing.

The correction of the exponent with the left of the mantissa is made
by the reversible counter which counts the left shift bit times minus

ON BLOCK OPERATIONS USING DELAY LINES 61

FAO > IG‘O

A

Y Ferm F

Fic. 11. 45

one. When no shift ocurrs, the exponent increses one. The left shift
bit time is directly controlled by the on time of GF' just as the right
shift case in ¢,. When the exponent overflows, the overflow indicator
is set and when it underflows, the sum is made zero. At the end of ¢,
the mantissa of the sum is in E,y~F,, the exponent in E,~F, and the
sign in E, (Fig. 12). When the transfer time continues and the augend

Counter

— =1
E | I t%
P +1

Fic. 12. ¢,

comes every four word time from the line L, the summation of floating
point numbers is produced in the register E.

(VI) The floating point multiplication also takes four word times which
are written ¢;, ¢, ¢; and ¢,. In ¢, of (VIa), just as in (IVa), the ab-
solute value of the mantissa of the multiplier gose into the register E,
that of the multiplicand goes into the line A, delaying one word time.
The sign of product is set in FE,; at ¢, time. IG,, IG, detect zero value
of both numbers and the bit showing zero product is stored in F,. At
tex-$;, the sum of the exponents -7 is made by passing through the
full adder F4, and stored in E,~FE, where it is corrected in the excess
27 form at ¢,-¢,. If the exponent exceeds 2'—1, the overflow indicator
is set, if it is below 0, F} is set for zero product.

62 M. HOSAKA

From the bit time t,,-#,, the mantissa of the multiplicand, coming
from the line A and its double and triple values are selected by the
quaternery digits of the multiplier in Ey~E,,, adding them though the
distributed full adders into the shifting register F, making the 40 bit
length product. For normalizing, at ¢,-¢;, when 22 bits in the high
order of the product are in Fy~F,, if Fy; is zero, the right shift is
stopped one bit time and the exponent in E,~FE, is subtracted by one.
For rounding off to make 20 bits mantissa, the carry flip-flop CF; of the
left most full adder FA, between F, and F, is set at t;- ¢; and the right
shift is stopped at t,-¢;, when the round off carry is stored in CF}.
These right shift operation is directly controlled by the flip-flop GF as
before. In ¢,, if F,=0 which shows the product is not zero, at ¢; the
sign bit in E,, at t. the exponent in HK,~FE, and at ¢,,, the mantissa
from the sum terminal of FA, are sent to the destination line via the
late bus (Fig. 13).

Counter
N 4 Fy

: | | O

N '
Mantissa of product Exponent of product Sign of product

F r 4}—, FAT }b——
Mantissa of product
Product indicator
CFy Fi

Fig. 13. Floating point multiplication

In the case (VIb) and (VIe), the flow is same as in (IVa) and (IVe),
but the process is as stated above. A"XB is constructed in 4n word
times instead of 2n word times in the fixed point operation.

(VII) In maximum value selection operation, the numbers in the line
L flow into E or F register so that the maximum absolute value in L
remains in E register and its address in the line A. Data from L go
to the full adder FA, and to the F register via EB, and IG,, where
their absolute value are taken. At first the number in the E register
is assumed maximum and set GF=0. Then the data in E recirculate in
itself and its inverse goes to the full adder F'A, making comparison with
the data from L. The carry bit of FA, at t, determines which value
is greater. If it is zero, the data in E is greater and GF remains zero

ON BLOCK OPERATIONS USING DELAY LINES 63

N — —> |

CFy

o |
: O

Fi1c. 14. Maximum selection

o) 1o

for the next one word time, so that the new comparison cycle is repeated
same as above. If it is one, the data from L is greater, GF' is set one
and the data in F is used for the next comparison insted of the data
in E, which is replaced by the data in F during comparison process, and
the line N is connected to the line A for that word time. Thus at the
end of this block operation, the maximam value in the line L is in F
register and its address in the line A.

(VIIb) Data from L go into E register via EB,, IG, where non zero
is tested and the recirculation is stopped. Non zero word detection make
GF=1 for the next one word time when the recirculation of the line
L is restarted and the address is recorded from the line N into the line
A. With the interative use of this command, only non zero data can
be selected without testing for zero every words in a array and pro-
gram branching.

(VIIIa) This is just the “and” operation on the way of the data
from L and L’ via EB,, EB,, and LB to the destination line.

(VIIIb) One bit delay is inserted in the circulation except for sign
bit time. Zero is written at the bit time &,

(VIIIe) This is to make the line L one bit short and recirculate except
sign bits which go back normally. At ¢, zero is written in the line L.

(VIIId) Double length numbers recirculate in the line L. The recir-
culation is inhibited at the even word time and sign bits, delayed one
word time via the line A, are written in the line L at ¢, of the odd
word times. Thus a group of double length words are changed to a
single length word group.

Those stated above are the explanation of the flow control of block
operations. There are many other useful block operations, but they can
be synthesized by combining the block operation commands referred above.

64 M. HOSAKA

5. KEzxamples of Programs

Build-in block operation commands make processing faster as well as
programming easier. A few example are shown.
(I) a/s, b’s are given in the consecutive addresses in the line L and
L', SNab, is calculated as follows.
clear lire B. (two word line for > ab)
make >la,b, in line B. (i=o0dd)
shift one work length in line L (i—i41)
shift one word length in line L' (i—i+1)
. make >1a,b, in line B.
Thus > ab, is produced in the line B within five circulation times of

AN

the line L. When data are placed every other locations, an inner product
can be made within one circulation.

(II) a/s are placed in consecutive odd addresses. >l a’ is calculated
as follows.

1. z—>line 4

2. 1—line B

3. make z, 2%, - -+, 2" in line L
4. clear line B

5. make >l a2’ in line B

Thus the polynomial Sla, ' is evaluated within two circulation times.

(ITI) Rearranging positive numbers a/s (i=1, --+,100) in decending
order, whose initial order is random in line L.

1. select maximum value of line L into E register and place its addrss

in line A.

2. test E register for zero, if zero, stop, otherwise go to next.

8. clear the location in line L, indicated by the content of line A.
(This is not a single command but the clear command is made in
line 4 by adding the constant and then line A is made command
source. This command making process and its excution can be
performed within one circulation time.)

4. circulate line L via register E for one circulation time. (every
words of the line L is shifted left one word and content of K is
stored in the most right word position of L)

5. jump to the command 1.

This sorting program can be completed within 300 circulation time.
These are some of examples best suited for block operations, so that
their speed is hundreds times higher than that with no block operation
device. The report® says that in the problem of large matrices and
floating point vectors, the solution time reduced to one sixtieth of that
in which block operations are not used.

ON BLOCK OPERATION USING DELAY LINES 65

6. Conclusion

When dely lines are used for memories and registers, block operation
technique, many of which are described in this paper, can easily be ap-
plied, to obtain high processing speed and easy programming. This idea
were widely used in the two computers of Japan National Railways, which
have been successfully operated more than one years. Though serial and
extremely time sharing operations with 100 KC clock rate, they compete
with large scale high speed computers for special types of works. These
technique can be applied to other special purpose as well as general
purpose computers. If higher clock rate as with magnetic strictive delay
lines, are used, the operation speed is proportionally raised.

Auther wishes to express his gratitude to the members of the Auto-
matic Control Laboratory at the Railway Technical Research Institute
of Japan National Railways, who descussed and helped this project, and
to those who worked for the construction of the computers, at the
Electronics of Division of Hitachi Ltd. and at the Research Laboratory
and the Electronics Division of Mitsubishi Eleetric Co.

REFERENCE

(1) M. Hosaka, Y. Ouno, T. TaNI: Seat Reservation System of Japan National Railways,
Proc. Symposium on Data Processing Machines, Denki Tsushin Gakkai, Oct. 1959.

(2) 8. Suzukl: Matrix Calculation, The first symposium of Sitri Kakaku Sogd Kenkyu,
group 4. Jan. 1960.

