The Programmed Digital Differential Analyzer

MASARU TAKATA*

This programmed digital differential analyzer described in the following
is a simulation of an analogue computer on a digital machine and it is
used for solving the initial value problems of ordinary differential equa-
tions. The user of the analogue computer may do without the knowledge
about the numerical methods. It is necessary for him only to make the
connections between the components used. There, the order of the
arithmetic operations necessary for the computation in the case of the
digital macnine does not matter at all. Whereas, it is the main task
for the programmer of the digital computer.

In this programmed digital differential analyzer (abbreviated as DDA
in the following), the programming is completed by only to make the
connections as it is done in the case of an analogue computer. We
suppose the pseudo components of the analogue computer which are re-
presented by the corresponding numerical codes shown in the table.
The functions f,(x, t) of the right hand side of the differential equations

D oy oy wt) i=1,2, 0,1 (1)
dt
are expressed by these codes without considering the order or sequense
of the arithmetic operations. These three address type pseudo codes are
then translated to the machine codes which are the object programme
of the function subroutines of fi(z,t). The order of the arithmetic
operations properly judged by the DDA system.

Since tte floating arithmetic is used, the scaling is unnecessary. The
data such as the initial conditions are read in by the usual input routine.
The numerical integration formulas used are the predictor-corrector type

By =%, 1+ 2R, , 9

o D) btz) %)
which are programmed as the master routine and the linkage between
the master and the function subroutine is automatically made by the
system after the completion of the translation. Somewhat detailed des-
criptions are made in the following.

The machine used is JEIDAC-101 or NEAC-2203 which has 2000 words
drum memory with a mean access time of 8ms, Since one word is com-
posed of 11 decimal digits with sign part, the pseudo code has the same
number of digits, and it has the following form as shown in the Table 1,

* Faculty of Engg., Tokyo Univ., Tokyo
46

THE PROGRAMMED DIGITAL DIFFERENTIAL ANALYZER 47

TABLE 1.

component pseudo code function
input b input ¢

integrater *+0asa; bobih: 1 cocrce T [bedt
(a0=0) +0 a0 bob1bz 0 000 r :tfbdt
amdg?;'lp‘ﬁletgl +1 Q1o boblbg 1 CoCiC2 T +be
(ap=1) +1laas bbb 0 000 r =+b
division operator +2aiay bobibe 1 cocicc T b/e
(20=2)
(undefined) undefined
(@o=3)
function implicit type function generator, finds the
generator Fda: bobde 1 Gooies T 0o fl@)=0
(@o=4)
funetion explicit type function generator +f(b),
generator Thaws bbb 0 00 7 S function No. (0,1,2, --+)
(ao=5)
(delag) +6aw@s bobiby 1 cocica T b(E—ecdt), X(c);=300"
Qo=
+ output: b for (»)=0,
relay +70 7 bbby 1 cocre2 T : ¢ for (H<0
(ao=7) +70 r b0b1b2 1 CoC1Co r ‘Output; IC) f-gi: g:gzg’ (7', [1_6>
m(‘i,le)j?:&znt +800 000 O cocicz 7 c: printing designation (printed per c4t)
(26=800)
constants constants ¢: number of the constants
(potentiometer) T8%0z 000 0 cocrca 7 <50
Qo=
printer +9a1as bobibe dodids ds print (b)
(@o=9) a10s: designation of the column

dod;: unmber of digits of integer part
d:ds: total number of digits to be printed

= Qs Dob by X CoCiCs 7

the first 8 digits a,a,a, (component a) represent the output component,
the first of which a,, shows the feature of the component and the second
and third digits a,a. its number. The digits bbb, and cyc,c, represent
input components, the latter of which are 000 if the X part is 0. As
one may easily understand the meaning for the case of a,=0,1, 2,5, 8,
the expression will be confined to the cases of a,=4,7,9.

a,=4. The root of x for the equation f(x)=0 will be obtained by
Newton-Raphson method, namely from the ¢-th aproximation x, the
12+1-th one will be calculated by

x(i+ D x(i) — f(x(i))/f’(x(i)) .

The input b is the f(z®/f'(x”) above, whereas 8-code (c,=8) is usually
assigned to the input ¢ as the initial estimation which is, subsequently

48 M. TAKATA

in the course of calculation, replaced by the value of x at the preceding
time. The explanation of the translation of this code will be defered
to later.

A,=7. The output of the relay 70 » is either b or ¢ depending upon
the condition of the content of the component which has the same 7 as
its tail with that of code 70 . The number of the relays are limitted
to 9.

a,=9. By the column designation a,a,, the printed form appears as
follows:

00 01 02 03 04 05

..................

The digit following b must be —1, when one wants of print = data
following b. For example, by 901 000 38 d,d,d,d, one has the following
prindted form:

(003) (002) (001) (000)

When dqd,d,d;=0000, the printed numbers are in floating form used in
the machine.

The only one restriction in the programming is to arrange the order
of the pseudo codes in the ascending order of the a,~part.

Example. &=yz, §y=—zx, 2= —%xy—{—z. (Initial conditions are omitted

here).
The integrators 00, 01 and 02 are assigned to 2z, ¥ and x respectively
of which outputs are all required in the form of fixed type with two

digits of integer part and nine digits of total. To the constant %, the

code 801 is assigned and the adder with multiplier is necessary for =z.
The programme is as shown in Table 2. The

end letter ‘0Z’ shows the end of the pro- TABLE 2.
gramme. —000 100 1 801 0
The numerical data such as initial values or 000 000 O 000 O
constants etec., following these pseudo codes —001 000 1 002 O
are read in by the initial routine. 002 000 1 001 0
The system of this DDA consists of three 100 001 1 002 ©
parts; 800 000 0 040 0
(1) theroutine which reads the pseudo codes 801 000 0 001 0
and constructs two tables necessary for 900 800 0 020 5
. 901 000 2 020 9
the translation. 0z

(2) the routine which finds the order of the

THE PROGRAMMED DIGITAL DIFFERENTIAL ANALYZER 49

numerical procedure required for DDA codes and produces the
object programme.

(3) the numerical integration routine.

The first one above reads the DDA codes and stores them in the appro-
priate memories, constructing the tables in which the number of the
components appeard in the programme and the actual address assigned
to each component is stored. These tables are referred at every time
of the translation and are modified if necessary.

The translation is executed as follows. The processor reads the pseudo
codes stored in the memory in reversed order from the one of the largest
ao(<T) to the code of the least a,(=0). If a code ¢ which contains those
inputs b, or ¢, as 0, 6 or 8, the pseudo codes consist of such a a are
translated immediately and the code o is registered in the table, where
all the translated codes @ are memorized. The code, which has the iuput
b or ¢ other than 0, 6 or 8-code or registered one, is skipped over
momentarily and the content of the unsolved code counter U is raised
by one. If the content of the counter U is not zero when the pseudo
code a,=0 (integrator) is read at first time, the process repeated again
from the largest a, which is not yet translated. Finishing the transla-
tion of all pseudo codes consisting of a, other than 0, then the transla-
tion of the 0-codes are executed. Finally the link orders to the master
routine are planted in the top and tail of the object programme, and
then the type routine is compiled.

The situation is not so simple as above for the case of 4-code. When
the 4-code appears, its input part b, namely f(z®)/f'(z”), may not be
obtained untill the output 4-code itself is calculated, since the 4-code
namely %, is included in the calculation of f(x) or f/(x). The processor
finds its existence by recognising the fact that the content of the counter
U of the present sweep is the same as that of the preceding one. Then
the first 4-code is compiled by the following procedure. The processor
produces at first such a programme that transfers the content of the
memory, corresponding to 8-code written in the c-part of that 4-code, to
the memory assigned to x, the content of that 4-code, as its initial
guess. Memorizing the address of the order of the object programme
now produced, which is just preceding to the upper end of the loop
calculation «, the processor translates the pseudo codes now solvable by
adding that 4-code to the list of the already translated codes. After the
completion of the programme calculation f/f’, machine codes for the

convergence test are produced. This procedure is repeated enough, if
more 4-codes are there.

The number of steps of this processor is about 1200, excluding 430
steps for the master (integration) and the printing routines. The time

50 M. TAKATA

required to read this programme is about one and a half minutes by the
photo-tape reader. As an example of the processing time we may quote
the one which required one minute and thirty five seconds to produce
about 240 steps of the object programme.

This system was successively used for the problems of chemical reac-
tions or the simulation of the control processes. This is also applicable
for the calculation of the algebraic expressions which is required to be
listed in tabular form for the equidistant arguments.

