A New Method for “Exact Calculation” by a Digital Computer

(An Application of Modulo p Arithmetics)
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1.  Introduction

The precision of calculations on a digital machine is usually limited
by the length of the accumulator of that machine. In conventional
multiplication, the less significant half of a double precision product is
discarded after rounding-off. Sometimes, however, it is desired to main-
tain the result in its full length, that is, to hold an exact result without
any rounding-off, and in this case a suitable subroutine must be used
to handle the double length result.

In this paper, a new method is described which simplifies multiple-
length calculations. Exact calculation is indispensable in problems related
to the theory of numbers, such as, in the generation of primes, factori-
zation, and integral solution of indefinite equations. It is not hard to
find further examples of problems for which such exact calculations are
effective. In the inversion of matrices, we often encounter ill-conditioned
cases in which several significant digits are lost during calculation by
an accidental cancellation. Floating point calculation is of little help,
and may even be dangerous, because it tends to incorrectly imply high
accuracy. Multiple precision computation is the only effective cure, and
if the problem is extremely ill-conditioned, one must resort to treating
~all data as integers and perform an exact calculation without any
rounding-off.

The method to be described here will offer a new technique that may
be used to simplify the evaluation of complex expressions involving ad-
dition, subtraction and multiplication. The characteristic feature of this
new method is to make all computations modulo an integer p. In other
words, whenever a number greater than p is obtained during computa-
tion, the number is just replaced by its residue obtained by dividing it
by p. Thus we have only to deal with numbers of single precision
throughout, provided p lies within the capacity of the accumulator.
Since the result thus obtained is the residue of the true value modulo
D, it is necessary to reconstruct the true value by some means. This is
done by repeating the same computation using several different moduli p,,
Dss v+ +, Py, and by solving a system of simultaneous congruence equations
to determine the true value w from its residues u u,, -+, u, As it
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4is generally possible to estimate an upper limit for the true value of
the expression, the number of different moduli needed to compute u
unambiguously can be predetermined.

This method is, in principle, applicable only to expressions consisting
of addition, subtraction and multiplication. Nevertheless, this method
can be extended so as to apply to expressions involving division provided
the final result can be shown to be an integer (Example; n(n—1)(n—2)/6).
In evaluating such an expression, the ‘‘division” modulo » may be
understood as a process for obtaining x=a/b as the solution of an equa-
tion bx=a (mod p). It should be emphasized here that p must be a
prime in order for division always to be possible.

It is interesting to note that the present method is in principle nothing
but the well known checking method of ‘‘casting out nines”. Let the
problem to be checked be

12344 567=1801
The calculation goes as follow:
1234=1+2-+3+4=10=1+0=1
567=54+64+7=18=9=0 (mod 9)
1801=1+8+0+41=10=1
which just corresponds to the case p=9 of ocur method.
The method is based on the theorem:

I A=A4, B=B, (mod p)
then, AxB=AsB,
AB=A,B, mod

and one computes A,=B, or 4,B, instead of computing A+B or AB.

2. The process of Calculation

21. Reduction Modulo p

While the actual procedure to be followed is evident from the principle
stated above, several remarks will be made in connection with practical
aspects of the programs.

The process is carried out with the help of suitable subroutines which
perform addition, subtraction, multiplication and, if necessary, inversion,
all modulo p. Inversion modulo p means finding an 2 which satisfies
ax=1 (mod p). It is convenient to prepare an interpretive routine which
incorporates all four of these basic arithmetic operations together with
several branch instruetions. These subroutines are required to operate
on the operands z satisfying 0<z<p, and to give a result so normalized
as to lie in the same interval. Reduction of an arbitrary integer X
modulo p amounts to finding a pair (q, #) which satisfies
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X=pg+2 (0<z<p). (21-1)

This may be done quite simply if the computer has a division instruction
which forms a correct remainder.

However, the following algorithm is sometimes more efficient if we
choose p so that it is slightly less than the accumulator capacity. Let
the length of the accumulator be s binary positions and choose p so that
it may be written in the form

pzzs—-h’ (2.1‘2)
where % is a small integer. Then, to obtain the residue of X modulo
p add X,= )2{ (upper half of X) multiplied by & to X, (the lower half

of X). That is,

X=2°X,+X, 0<X, <2 (2.1-3)
and hence

X'=X+hX,=X,+(2—p)X,

=X+pX,=X (mod p) (2.1-4)

If X’ again overflows, that is, is larger than 2°, then the process should
be repeated, until the relation 0<X’'< p is satisfied. This algorithm is
even possible on a computer which is not equipped with a division in-
struction giving the correct remainder. A difficulty occurs if X’ falls
in the interval

P<X <2, (2.1-5)

Since in this case X’ does not overflow, it does not change when the
process is repeated. To avoid this difficulty, the initial value of X is
made negative. Since now X, always remains nonpositive, X never
overflows in the positive direction. When X, becomes zero, the process
may be terminated.

2.2. Calculation of a Reciprocal

Two methods are known for the solution of the equation ax=1 (mod p)
for given a, one using Euclid’s algorithm and the other using Fermat’s
theorem. While the quantity of arithmetic computation may be less
using the former method, the program is simpler using the latter
method, and for this reason the latter one was adopted.

If » is a prime, then by Fermat’s theorem

ar~ =1 (mod p) (2.2-1)
so that «, the reciprocal of a, is obtained as

r=qr"* (mod p) . (2.2-2)
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Let the binary representation of p—2 be

8—1
p—2=>4d,2 (2.2-8)
3=0
then z is determined by a recurrence formula:
D=1
p,=p; i a®-i (mod p) (2.2-4)
=P, .

That is, the binary digits of the integer p are tested one by one, while
p; is squared each time, and result is further multiplied by a whenever
the tested digit was a ‘“1”, The process is particularly suited to binary
computers. The flow chart for this process is shown in Fig. 1.

Fic. 1. Flow chart™for the inversion routine modulo p.

Note (1) We assume 2°-24+2<p<2¢%, and hence d;—, is
always 1, so that the first cycle of (2.2-4) can
be done outside the loop.

(2) Successive digits of p are examined by shift-
ing u left one position for each new digit
and examining the sign digit.

(8) R denotes the lower extension of the accumu-
lator, which in integer multiplication contains
the product.
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2.8. Determination of the True Value

Suppose ¥, is obtained as a result of some calculation using p; as
modulus, so that

Y=y, (mod p) (1=1,2,---,n) (2.3-1)

If the true value Y is smaller than every p, all y/s will be equal to
each other, and equal to Y. In general, however, ¥ will become larger
than the accumulator capacity, and all y,’s will be different from each
other. Then the system of simultaneous equations (2.3-1) is solved to
find the definite integer Y. In order to determine Y wuniquely, a con-
dition such as

0<Y<ppy -+ D, (2.3-2)
or

IY%pﬁoz cep, (2.3-2")

should be satisfied. The number n of primes necessary for the unambi-
guous determination of Y can be determined by estimating the upper
limit of Y.

For the determination of Y, a sequence of Y,s is obtained which
satisfies:

Y=Y, (=v) (mod p,)

Y=Y, (mod p,p,) (2.3-3)
Y=Y, (mod p;ps -+ D).
This can be done by finding a set of g,’s such that
Y,—Y,=¢p, )
Y, ~Y,=q,0,0; (2. 3. 4)‘
Y=Y, .1=q¢D0Ds* Dio1s
and which satisfy
0<g,<p; 1. (2.3-5)
Then, since
Y—Y . =y—Y,., (mOd pi) (2.3- 6)

g, is obtained from
==Y, )P0+ * Di-y) " (mod p,). (2.3-7)

Here (p,ps -+ - p,..)~" means a reciprocal modulo p,.
Then Y, obtained by this process is equivalent to Y, or by rewriting
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(2.3-4) we get
Y= (9uPp-1F9n-1)Pr-2F2n-2)p-s+ - )01+ (2.3-8)

The ¢s are calculated by the equation (2.83-7) when the range of Y
is given by (2.3-2), and ¥, is determined by (2.3-5). It is however more
convenient to choose ¢, so that

l9,] < p;-1/2

when the range of Y is given by (2.3:-2'). In either case, ¢, for i>1,
with a certain 1, will become zero when an unnecessarily large number
n is taken.

The calculation stated above requires some calculations on multiple
precision numbers, namely the addition of multiple precision numbers,
multiplication of a multiple precision number by a single precision number
and the reduction of multiple precision numbers modulo p. The numbers
(pips + -+ Di-1)”* (mod p,) can be calculated in advance and be tabulated.
Some p/s, ks and (pp, -+ v, (mod p,) are listed in Table 1.

TABLE 1.
7 i hi (D122 ++* Di-)"  mod Py
1 343597 38337 31 1
2 38319 49 324508 63968
3 38307 61 73491 66249
4 38299 69 224977 16804
5 38289 79 211820 09803
6 38247 121 334384 41941
7 38227 141 179709 97103
8 38121 247 218289 14109
9 38059 309 272955 85313
10 38043 325 68501 32122
11 38011 357 104116 19371
12 37917 451 146250 41267
12 37869 499 5351 31435
14 37849 519 126517 94573
15 37837 531 206522 59502
16 37821 547 174572 11185
17 37813 555 140672 61446
18 37791 577 185955 21066
19 37777 591 101995 05182
20 37771 597 146932 64241

24. Comparison with Conventional Multi-length Calculation

Let us now compare the number of arithmetic operations needed in a
given computation using the conventional multi-precision process. If
it it assumed that an accuracy of n-tuple precision is desired, then
the number of moduli is » in our method. Then #? multiplications are



34 H. TAKAHASI AND Y. ISHIBASHI

needed in the ordinary multiplication of two numbers of n-tuple preci-
sion, while in our method, n multiplications are needed for each multi-
plication modulo p, and » further multiplications for reduction modulo
p, so that 2n multiplications altogether are sufficient. When #» is large,
our method has a remarkable advantage. Another merit which should
be emphasized is that the memory space required during calculation is
the same as that required in single precision calculation, because the
entire calculation can be performed using each p singly with successive
p’s being used one after another so that there is no need to store in-
termediate results for all the different moduli. Therefore our method
is useful either for computers with a small memory capacity, or for
problems requiring a large working memory.

3. Exact Matriz Inversion as an Example of the Use of the Method

The inversion of a matrix will be treated as an example, since it is
one of the problems in which the effect is most conspicuous. We as-
sumed that the elements of the given matrix are integers and that the
elements of the inverted matrix are to be expressed as fractions, where
the common denominator is the determinant of the given matrix and
the numerators are its minor determinants. Let the set of equations
associated with the given matrix be written in matrix form as follows:

AyQyg *cc Gy Ty 10---0 Y,
Ugilyy ** Qon T2 ) — 0 1---0 Y. ) (3-1)
ApyQpe * 00 Gy Ly 00--- 1 Y, !

On dividing the first row by a,;, one obtains

1 a12/d11 tte am/an Xy 1/(1,110 (] Yy
("1’21 (%’22 <o Ao, ff;z — 0 1 .o 0 ?./2 (3.2)
P A I S 2

Similar elimination processes are repeated until the matrix on the
left hand side becomes a unit matrix, with the result that the inverted
matrix is obtained on the right hand side. Exact execution of this
process in fractional representation usually becomes extremely complicat-
ed because of the large values of the quantities involved, and the present
(mod p)-technique is very effective in reducing the computational burden.
Here however, we shall employ a method whereby the use of fractions
is altogether avoided. Specifically, we perform division modulo p wher-
ever division occurs, in the sense already mentioned. Clearly, there is
no need to worry about ‘‘overflow” and it is not necessary to search.
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for the largest element to use as a pivot. At the end of the elimination
process we have a unit matrix on the left hand side.

The matrix thus obtained on the right hand side is in a certain sense
the inverse of the original matrix. That is, it gives the solution of the
given equation interpreted as an equation (mod p), but it is not possible
to determine the true value of the inverse matrix having elements in
fractional form. It should be noted, however, that all elements of the
true inverted matrix may be represented as fractions whose common
denominator is the determinant of the given matrix, if all the elements
of the initial matrix are integers. From this, it is clear that all elements
of the right hand matrix can be transformed to integers by multiplying
by 4.

The value of the determinant 4 can be obtained from the processes
of elimination by forming the cumulative product of the pivotal elements
used in each step of elimination; that is,

— / -1
Ad=013005" + -+ U™, (3:3)

where .y, @y, @33 ++ - @, are successive pivotal elements. This may
be seen from the fact that the only operation in each step of the elimi-

I

1—>1
1 —=A
0 —j
J+1>j Set address
for <

Set address for j

a (i, R)-alj, k-1
a (1, 0>a(i, k=1

a(j0)a —= A
(R=1,2, . n)

a(J,kj“ a(.k"l) _ .o

« (5,00 %Y 2T s ati,m
A

(R=1,2,.ccec.. n)
. a(j,n)
a(j,0) 7 L+1 1

R

Fic. 2. Flow chart for the matrix inversion routine.
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nation process that changes the value of the left hand determinant is
division by the pivotal element. Thus, the determinant of the left hand
side is repeatedly divided by the pivotal elements in every cycle, until
it becomes equal to unity at the end of the last cycle, so that we have

A/<a11a22/ e ann(n—1>):1 . (3'4‘)

A flow chart for matrix inversion using the scheme given above is
shown in Fig. 2.

A difficulty will occur if any of the pivotal elements becomes zero
accidentally. In a case such as this, a search is made for a non-zero
element in the remaining part of the left hand matrix, and the elimi-
nation is continued; the first non-zero element to be emcountered is then
used as a pivot. In this case, however, some attention should be paid
to the sign of the result. If all elements of the remaining part of the
left hand matrix vanish, the matrix is degenerate and no further calcul-

ation is necessary.

4. The New Method Applied to Calculation on Polynomials

4.1. Principle

It is of some interest to expand our ideas and apply them to calcul-
ations involving polynomials using the algebra of a polynomial field
modulo f(x), where f(x) is some polynomial of x. Actually, the technique
to be explained in this section consists of replacing a calculation in-
volving polynomials A(z), B(x), C(x), --- by a corresponding calculation
involving the numerical values A(a), B(a), C(a), ---. Since A(a) is equal
to the residue of A(a) modulo (x—a), it is clear that we are dealing
with the same technique that has been explained in the preceding para-
graphs.

Suppose we are given several polynomials A(x), B(x), C(%), - -- and have
to perform some sequence of algebraic operations which consists of just
addition and multiplication of these data polynomials. Let the result
be P(x). It is evident that for any « (supposed to be real for practical
reasons), P(a) can be obtained by making the same sequence of opera-
tions on the numerical (sample) values A(«), B(a), C(a), --+. By repeating
same sequence of operations on n different values of a, we can deter-
mine the explicit form of the polynomial uniquely using Lagrange’s in-
terpolation formula, on the assumption that P(x) is a polynomial of
degree not greater than n—1. Since an upper bound for the degree of
P(x) can usually be found by some consideration of the actual process
for obtaining P(x), it is always, in principle, possible to determine P(x)
unambigously by using sufficient number of sample values « for z.

The advantage of this method is evident and is quite similar to that
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of the foregoing case. Specifically, it is simpler to program numerical
operations than to program manipulation of algebraic expressions, and
less working storage in needed. The last step in this method, which is
the determination of the polynomial from the sample values, may be
handled by using a standard program available for this purpose, so the
time and effort required for programming individual problems will be
reduced.

Calculations concerning alternating current networks are most effec-
tively handled by this method and provide a good example for purposes
of explanation. Network calculations usually involve evaluation of deter-
minants having the elements of the form

Although the final results required are usually numerical values, they
are in general complex quantities and should be calculated for complex
values of p, and hence require arithmetic operations on the complex
numbers. For this reason, it is more convenient to obtain first the ex-
plicit expression for the determinants as functions of p, and then to
evaluate them for complex values of p. Since the calculation of deter-
minants involving polynomials is an extremely complex process, our
method offers a powerful tool for treating such problems. The evalua-
tion of polynomials in ecomplex variables is a fairly standard process and
may be performed by using standard subroutines. Thus, the whole
problem can be dealt with simply by the use of more or less standardized
routines. '

Limitations of this method lie naturally in the loss of accuracy caused
by the use of the interpolation formula, and its accuracy also depends
essentially on the proper choice of the sample points «,. We will not
enter the details of the error analysis because this topic seems to deviate
somewhat from the subject of the present paper.

If we introduce the further restriction that the coefficients of the given
polynomials shall be integers, and try to make an exact calculation with
these polynomials, the arithmetic modulo p again becomes applicable to
the calculation of numerical values. The advantage derived from exact
calculation is that we need not worry about loss of accuracy due to in-
terpolation irrespective of our choice of the value of a. A simple choice
would thus be to take 0,1,2,---,n—1 as a’s, and to calculate P(0),
PQ), ---, P(n—1) in order to determine P(x).

4.2. A Note on the Determination of the Polynomial

It is not convenient to use the conventional Lagrange interpolation
formula for the determination of the polynomial P(x), from the values
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P(a,), P(as), -+ -, P(a,). Instead it is much simpler to solve directly the
set of equations,

>l a;a; = P(ay) (4.2-1)

either by ordinary methods or by the method deseribed in the foregoing
sections.

Another method which would be useful in any interpolation problem
consists of finding a sequence of polynomials P(x), P,(x), -+, P,_.(%),
according to the following rule. First let Py(x) be a polynomial of 0th
degree, that is a constant, that coincides with P(x) at x=«a,. Next let
P,(x) be a polynomial of degree 1 which coincides with P(x) at z=a,
and x=a«,, and so on. This rules can be expressed as

Py=P(a,)

Py(@)=Py+(Plas) — P)——"
27y

Po(#) =Py () -+ (P(ags ) — Py (g, ) — E)@—as) - (@—ay)

(g —a)(ag—as) -+ (@ —a;) '
(4.2-2)
The process for calculation of the polynomials P,, P,, P,, ---, is simple

to program. This process is, of course, still applicable if the coefficients
are integers, and in this case, we can perform the exact calculation
using the modulo p technique. It is then convenient to use 0,1, ---,
n—1 as sample points, and (4.2-2) takes the form:

P,=P(0)
aw:m+wm—aﬁé

Pyx)=Py(2)+(P(2) _Pl(z))i(;_-hlﬁ

(4.2-3)

_ N Ny 2(e—1) - (@—i+1)
P @) =Pos)+(P) = P 2

—P, (@)+(P()—P, (i) *@=1) - (@=i—1)

7!

The division by ¢!, which appears in the second term of the right hand
side of (4.2-8) as the denominator, can be replaced by multiplication by
its reciprocal modulo p. Such a substitution is permissible, just because
the coefficient in the numerator is known to be a multiple of ¢!.
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4.3. ‘“ Harmonic Analysis Modulo p”’

It has already been stated that any set of distinct integers can be
used as sample values in the mod p case. It is natural to expect that
a suitable choice of a can simplify the subsequent calculation required
for obtaining the polynomial coeffecients. An example of such a set of
values is given by

a,=¢' (mod p) (4.8-1)
where ¢ is any one of the primitive roots of the equation
=1 (mod p) (4.3-2)
Equation (4.2-1) now has the form
P(eh)= Z a.gv (4.3-3)

A glance at (4.3-8) shows that P(¢) can be regarded as the Fourier
transform of the sequence a, in ‘modulo p’ sense. Therefore a, can be
obtained by the inverse transformation

a,=n"'>]e P(¢) (mod p). 4.3-4)

This may be regarded as a kind of harmonic analysis. Here, n should
of course be larger than the degree of the polynomial.

It has been assumed that the equation (4.3-2) has = distinet roots.
The necessary and sufficient condition for the equation (4.3-2) to have
n distinet roots, that is, the condition that x"—1 can be completely
factorized into linear factors modulo p, is that » divides p—1. This being
the case ¢ is given as

e=p2 0" (mod p) (4.3-5)

where z is any one primitive root of #? =1 modulo p. While we have
several different choices for ¢, these all lead to the same result.

44. Caleulation on Complex Quantities

The case n=4 of the harmonic analysis just explained gives a method
for performing exact calculations on complex quantities without applying
the rules for arithmetics with complex numbers. Let us take an integer
& such that

g= -1 (mod p) (44-1)

The equation has a root if and only if p=1 (mod 4). Now we substitute
this real quantity for the imaginary factor v—1 in all given complex
quantities, thus eliminating imaginary quantities. We then go through
the calculation using mod p arithmetic, and let the result be denoted as
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P(e). The same calculation is repeated using —e instead of &, and the
result is P(—e¢). Now the true result is given by A-+v—1B, where
A=271(P(e)+P(—¢)) }

B=—2-15(P(e)+ P(—2) .42

5. FExamples
Example 1. Calculate the determinant

x—11 —41 26 19 —72 93 32 18 70
—89 »—11 —4 88 —33 —87 —53 -89 —67
88 49 ©+45 —71 —63 —82 —8b —T1 6
55 —93 —55 x+92 5 86 76 —84 12
4= —21 84 —38 —18 x4-88 44 —33 b1 —96 | (5-1)
34 —20 —95 4 —b1 x+34 —92 2 -1
17 —40 44 —-87 31 37 ©—89 69 -—21
47 —25 85 25 —25 —b51 —30 z+411 31
—68 —81 7 63 67 —70 25 43 x—5

As 4 is a polynomial of ninth degree, n should be equal to or larger
than 10. Let » be 11. We have to solve
Xtt=1 (mod p) (5-2)

which has a root when p—1 is a multiple of 11. The numbers p=2%
—81, and 2%°—141 are primes that safisfy this condition. The upper
limit of 4 can be covered by these two values of p. Solving the equation
(5.2) we have

x,= 22840 82430  (mod (2%°—31))

2, =120625 84333 (mod (2%°—141))

(Other roots are given by x,=x," (r=2, ---, 10)) Calculation of 4 using
these values of z gives
p=2%—-31 p=2%—141
d(x) = 7852 04101 83663 43965
A(x,) = 24047 08928 120461 26152
A(x) =163778 32400 155625 87599
A(x,) =232231 21473 47743 79183
A(x;) = 38547 22321 292059 28729
A(xs) =249175 88930 141951 05338
A(x,) =127625 87777 156705 32757
A(x,) =286527 06171 340947 89793

A(x,) =180270 24938 62970 97808



A NEW METHOD FOR “EXACT CALCULATION” BY A DIGITAL COMPUTER 41

A(z,)=2313216 18182 68896 74223
A(2y;)=187205 80564 236994 63484

Applying a Fourier transformation to these values, the coefficients of
X™ are obtained as follows;

p=2%—-31 p=2%-—-141
x° 233424 70269 280219 07449
2! 296293 71739 299269 20529
2 121160 02332 121178 70352
x® 3523 02825 35623 31645
@ 223492 80914 223492 80804
2° 340107 10490 34107 10380
a8 343593 93753 343593 93643
2" 1435 1435
g 154 154
x° 1 1
210 0 0

From these two sets of values, the true from of 4 is obtained as

A(x)=u"~41542°+ 14352 — 3445841° — 349027847 x°
—12010457423x* 4 90026037471192% 4 58350919244126642
-92427438735032x41461674905790008195

Example 2. Inversion of a matrix

1 2 4 8

1 38 9 21
(@)=

1 4 16 64

1 5 25125

Every step of the process of inversion mod (2%*°—381) is shown below in
octal form for purposes of elucidation.
1o, +2x,+ 4x,+ 10x,=vy,
1,432+ 112+ 332,=v,
1z, +4x,+20x,+ 1002, =y,
12, +5x,+ 381, + 1752, =,
2+ 22,4+ da,4+ 10x,= 1y,
lo,+ 4o, + 286, =3777TT7 T7740y,+ ¥,
20, +142,+ T0x,=3777T77 T77740y,+ v,
3w+ 252, -+ 1652, =377777 777740y, +vy,

Initial equations

First step
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Second step

M 5rs+ 232, =877777 TT7740y,+ 1y

Lo +8TTTTT TTTT13323-+37TT77 TT7703%,= By, 377777 TTTT3Tys
25+ 221, = 1y, +377777 777137y + Y3
625+ Tdowy= 2y, +3TTTTT TTTT36ys+ Y.

Third step

2+ 11y =177777 TT7761y,+37T777 TTTT40y+ 177777 T77761ys

T+ 30x,= 6y, +377777 777731y + 3Ys

23+ 377777 TTTT072, = 177777 TTTT55y,+ 6y, + 177777 TT7156y;
6y =377777 TTT7740y,+ By +377TTT T77736y3+ Y4

Fourth step (Result)
2, =052525 252520, + 177777 177761y, + 177777 T77760ys--325262 525221y,

Zo= 21y + 377777 117715y 17ys+87TT77 777735y,
25=3825252 525211y, 23y, +1TTTTT TT7741ys+ 252525 242405y,
4= 2y, F1TTTTT TTT753y2+ Bys-+ 177777 777757y,
4=1-1.2.6=12
A=), 4
170 377777 777361 264 377777 777661
B 37TTTT 777603 344 377TTT 777447 64
o 30 377777 777637 74 377TUT TTUT1T
37TTTT 1737 6 377777 177733 2

Changing the last matrix into decimal form and attaching correct signs,
a ! is given as follows:
120 —240 180 —48
—94 228 —180 52
24 —66 60 —18
—2 6 —6 2

(@)=



