Information Processing in Japan Vol. 5, 1965

On a Compiler for a Process Computer

AKIRA TANAKA* AND KIYOSHI SUZUKP**

Regarding to the automatic programming systems for the process control computers,
several works have been announced up to date. IBM, TRW (now, Bunker-Ramo)
or Honeywell are their suppliers, for instance.

These systems are constructed to facilitate the treatment of the FORTRAN II
language in their arithmetic computations.

Specific features for process control in handling the input/output signals have
not yet been characterized in detail.

The authors planned to develop a system program for a process control computer
HOC-300 in 1961.

A process computer application with a memory of 4~32K words is available
for such purposes as,

(1) data gathering,

(2) data analysis, or

(3) optimal control.

Apart from such an application as a data logger, an operational program of a
process computer is neccessarily under reprogramming after several thousand hours
of operation.

The ratio of the instruction areas (including various constant tables) to the data
areas generally lies in a range from 1.5 to 3.0. The ratio of the input/output
routines to the inner computational routines lies between 0.78 and 1.46. The
former value indicates the case of data gathering application to a blast furnace of
Fuji Iron & Steel Co., and the latter of real-time control application to a hasic
oxygen steelmaking process of Nippon Kokan K.K.

Each program of those applications was achieved with some six thousand machine
words. A highly experienced coder usually takes four or five hundreds hours in
pure coding of those kind of applications. His labor is rather devoted to coding
the input/foutput procedures because of complexity of the input/output signal
specifications, the time relations among parts of process operations, the outer inter-
ruption procedures and their nestings, the man/machine interface characteristics
allocations in the programming of these parts.

The development of an automatic programming system peculiar to process conirol

This paper first appeared in Japanese in Joho Shori (The Journal of the Information Processing
Society of Japan), Vol. 5, No. 5 (1964), pp. 253-261.

* Nippon Electric Co. Ltd., Tokyo; formerly in Hokushin Electric Works Co., Tokyo.

** Toyo Kogyo Co. Ltd., Hiroshima; formerly in Hokushin Electric Works Co., Tokyo.

50

ON A COMPILER FOR A PROCESS COMPUTER 51

is, therefore, requested with special considerations in its input/output handlings.
The purposes of this requirement are divided into;

(1) cut-down of programming cost,

(2) unneccessity of trained programmers in the process company,

(3) cut-down of turn-around time and out-of-service time.

The authors’ project was planned and performed as shown below. The related
computer was the process computer HOC-300 of Hokushin Electric Works, and the
automatic programming system completed for HOC-300 was named HODRAL
(Hokushin Data Reduction Algorithmic Language).

1961 Dec. Start of the project.

1962 Jan.~Feb. Planning for development.

Mar.~Apr. System design.

May Flow charting.
1963 Mar. Completion of assembler I.
Jun. Completion of compiler.
Jul.~Sep. Partial modification.
Oct.~ Completion of HODRAL compiler.
1964 Jan. On-line debugging.

In the period from March to December of 1962, the authors and their cooperators
were faced to four standardization tasks;

(1) the input/output hardware system of HOC-300,

(2) the machine code programming techniques,

(3) standardized design of library subroutines, flow charts, allocation maps, and

input/output specification sheets, and

(4) their filing method.

HODRAL was oriented to an ALGOL-like language. The reason of this orien-
tation was based on the less definiteness on its input/output representations of
ALGOL. The function of inner computations of HODRAL, however, was subject
to some restrictions in comparison with standard ALGOL. They were, instead,
constructed with such abilities as;

(I) concurrent use with the assembler codes,

(2) program linkage, and

(3) input/output signal handling

Fig. 1 shows the processing flow of this program system, and Table 1 shows the
statements of HODRAL.
~ Four statements, BEGIN, END, CANCEL and HALT are used for program linkage.
The essential points in program linkage are illustrated below.

(1) A variable name is to be used independently in the other program. Or, a

specified variable name is to be used relatively in multiple programs.

(2) Two or more source programs should be linked into a single object tape if

neccessary. Or, they should be linked as specified.

(3) The storage of the object program is to be optionally é.ssigned.

POINT and SHIFT are two statements useful to normalize the numbers manipu-

52 A. TANAKA AND K. SUZUKI

lated in the arithmetic operations. The HOC-300 computer has no floating
arithmetics, but has a rather long word of 36 bits.

Five statements, SAMPLE, CONVERT, LIMIT, MONITOR and EXTRACT are
mainly used in the input signal manipulations. In manipulations of the process
input variables, the followings are important.

Table 1 Statements of HODRAL.

arithmetic statement

V:=E;
Vi=etVe=E;
V:=SHIFT (V, N, N);
V:=F (V);

control statement
IF R)=>L;

IF R)=L, L;
FOR (SV:=C, C, C); S;--++:S;
GOTO (L);
HALT JUMP (L);
input/output statement
READIN (V);
TYPEOUT (V)
SAMPLE (V, N);
CONTROL (X, Y, N);
where, V or~is written in the place of X, and one of ST, AT, ON, OFT, D, or B for Y.
MONITOR (V, C, L);
IDCTE (V);
LAMP (X, Y);
where, ON or OFF is written in the place of X, and one of N, SCAN or ADC for Y.
miscellanea
BEGIN ;
BEGIN (A);
END;
HALT;
HALT (A);
CANCEL (V,eeet V)
CONSTARRAY (V{[Cl.--+-- , VICD);
DATASARRAY (V[C},:---++ , VICD;
LIMIT (V, V)
FORMAT (C, C);
READER (C);
TYPER (C);
IDCTOR (C);
CONVERT (V, L);
EXTRACT (V, C, L);
MASK ; UNMASK ;
In the above, the meanings of variables are as follows.
V: variable name
(SV: simple variable name)

E: arithmetic expression
C: constant (N: integer)
R: relation

L: label

S : statement

A:

absolute address

D
2)
3)
(4)

ON A COMPILER FOR A PROCESS COMPUTER 53

HODRAL
coding sheet

1

|

|

I

!

|
“Entry 2#1”’ Compiler

!

Symbolic :

coding sheet |

[

!

punch -

"Entr)‘f}Z'l

Assembler

coding sheet
|
|

Fig. 1 Processing low of the
system.

execute

Variety of sampling methods: priority interruption, random selection, and
sequential addressing.

Time-shared operation of input devices: scanner, pre-amplifier, and analog/
digital converter.

Mode conversion of the input variables into the HOC-300 inner mode.
This implies the linearization of a non-linear input and data compensation.
Bit manipulation of the input variables to separate and examine an individual
bit or a bit group which implies a contact status, a flag input, or a variable
identification code.

SAMPLE statement is applied to the functions (1) and (2), CONVERT to (3),
and EXTRACT to (4). Especially, in place of L (label) of the CONVERT state-
ment (Table 1), names of the thermo-couples and thermo-resistance bulbs such as
pt 50, CA or PR can be directly used.

LIMIT and MONITOR statements are generally used in pair to watch the process

variables. o

The concurrent use of the assembler codes with the HODRAL language aims at

two effects.

(1) To get an efficient object program in case of running time critical. For
instance, routines of the iterative readings of the flow variables, or routines
of the iterative pulse outputs to actuate the control valves, should be
partially written by the assembler codes to keep the operation cycles in
some cases.

(2) In order not to deadlock the programming even when this trial—HODRAL—is

recognized to be practically incomplete in its input/output signal treatments.
There had not been reported such an example as this programming system

54 A. TANAKA AND K. SUZUKI

at the date of this project.

Four statements, IDCTOR, IDCTE, TYPER and TYPEOUT are used in man/
machine interfaces such as operational guide indication or plant efficiency or alarm
logging. As the control functions of a typewriter, CRLF, SPACE, RED, BLACK
and TAB statements can be applied as they are.

CONTROL statement can be used in both cases of set point control and of
direct digital control. Variations of the usage of this statement are

(1) CONTROL (X, ST, N); or

CONTROL (X, AT, N);
(2) CONTROL (~, ON, N); or
CONTROL (~, OFF, N);
(3) CONTROL (X, D, N); or
CONTROL (X, B, N);
where, X denotes a variable name of value 0~999, N an address of the distributor,
D a conversion mode into binary coded decimal form, B no conversion mode. ST
implies that the control value X is the value to be adjusted of the set point. AT
implies, on the other hand, that X is the offset of the set point concerned. In case
of velocity modulation, the lable B is used, and in case of time modulation an absolute
address 63 are simultaneously used with B as

CONTROL (X, B, 63)

The address 63 denotes one of the output clock registers. This causes the clock
register be set an interval X, and X is lowered by the basic clock pulse until it
reaches to zero, when an interruption occurs.

For priority interruption, two statements MASK and UNMASK are supplied.

object
program

interruption procedure
(stored subroutine)
a
(a) object program or
. stored subroutine
- (b)
priority call
for interruption
ey

Fig. 2 Interruption procedure.

ON A COMPILER FOR A PROCESS COMPUTER 55

The interruption procedure is performed by a stored subroutine (a) as illustrated
in Fig. 2. The subroutine (a), however, doesn’t retire the contents of the working
addresses of an other stored subroutine (b) which is just running when the inter-
ruption occurs to the undestroyable storage. Further, even in the event that the
same subroutine (b) is to be called by two or more levels of the interruptions, in
general only one subroutine (b) is stored for common use to reduce the required
computing capacity. In these cases, MASK statement is of great use not to disturb
the working addresses in the subroutine (b).

In the HODRAL compiler, variables are automatically stored in the data areas.
No DATAS declaration is neccessary. Memory protection is automatically assured
for every 1028 words, if required, in specific 2048 words for every 64 words.
Whole memory capacity of HOC-300 is 8192 words.

Track Sector

Wi\‘rtgf:l% AddT”“, running phase [assembling phase| compiling phase
initial order
004 00
1
1016 00}
2 /(1,600
assembler
029 00}
03200
3
048 00| working storage
4 0500 (5 840 (640)
object program | PP table
064 00
5 (3.264)
compiler
080 00]
6 (2,048) (2.048)
data storage data table
096 00 (512)
7 standard function
104 00 (512) (512)
constant storage| constant table
112 00} (576) working storage
g |16 90} working storage
12100)
127 63] subroutine, etc.

Fig. 3 Assigned blocks of the system.

Optimum allocation faculty of the 11 address computer HOC-300 is performed
for every 128 insiructions. The priority of the considered addresses in optimiza-
tion of an instruction is

(1) its own operand address,

(2) the operand address of the preceding instruction,

(3) the stored address of the preceding instruction.

56 : A. TANAKA AND K. SUZUKI

References

[1] Brooks, M.E., Problems in programming control computers. Automation, 10, 2 (Feb. 1963), 78-82.
[2] Tanaka, A., et al., Computer control of basic oxygen steelmaking process and problems in its
programming. Information Processing in Japan, 4 (1964), 49-01.

