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A Note on the Conjugate Gradient Method

IWARO TAKAHASHT*

1. Preface

The conjugate gradient method which solves simultaneous linear equations
Ax=b is well known by numerical analysts. This paper has two purposes. One
is to generalize the gradient method which searches the maximum point of a con-
cave function f(x)=f(x1 ...., x~). The other is to show that our generalized
gradient method, applied to solve simultaneous linear equations, is itself the
conjugate gradient method.

2. Gradient Method
The gradient method is the recurrence formula

x71+1:xn __{__hnaf(xn% ( 1 )
where 9f=(0f/ox1, . ..., 0f/0xn), with an arbitrary initial approximation x°.
The /", which is a positive scalor, is determined to maximize
S +hrof(x™). (2)

If f(x) is differentiable** and concave**, maximizing point of (2) coincides with
the stationary point, at which f(x) has zero derivatives.

Above procedures determine x"*' only with the informations about x". We
could say, this relation is simple Markoff type. 1f x"*' is to be determined by
f(x*) which is the information at x”, and the direction p™* which has been used
to determine x, then we get a new generalized gradient method.

3. Generalized Gradient Method
(1) Initial Step

Select an arbitrary initial approximation x°, and compute
Y pp p

PP =0f(x") (3)

x'=x"+a’p° (4)
where a®>0 is determined to maximize

S(x*+a’p®), (5)
that is,

[0S (20 +a’p?), pOl=0%** (6)

This paper first appeared in Japanese in Joho Shori (the Journal of the Information Processing
Society of Japan), Vol. 5, No. 4 (1964), pp. 203~205.
* Institute for Research in Productivity, Waseda University, Tokyo.
** Hereafter we assume f(x) has these properties.
#6% [ A, B] denotes inner-product of vectors A and B.
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(ii) Iterative Step (n=1,2, ... ) '
pr=0f(e)+ o (7)
xr=x"+arp, (8)

where scalors a” and B are determined to maximize |

Far ) =F+a@f (o) +prpm)

that is, by the conditions

[0f(x), p1=0 (9)
[0/ (x), p1=0 (9"
Above procedures produce x', 4%, 2%, ... .converging the maximum point of f(x).

4. Equivalence of Simultaneous Linear Equations and Maximizing Problem
of a Quadratic Function
(i) The Case with a Symmetric and Positive Definite Coefficient Matrix
If a matrix A is symmetric and positive definite, then to solve simultaneous
linear equations

Ax=b (10)
is equivalent to maximizing '
J(x)=2b'x—x"Ax. (11)
Because of positive definiteness of A, A-! exists, and we have, for all x,
x—ADYA(x—A16)=0. (12)
If we have = in (12) instead of >, then
x—A~1h=0. (13)*

(i) General Case
If Bis a non-singular matrix, to solve

* If A is symmetric and positive definite, ¥ Ay=0 implies y=0.
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Bx=d (15)
is equivalent to minimize
(d— Bx)(d— Bx)=d'd—2d Bx+x'B Bx. (16)
From (15) we have
B'Bx=HBd. a7

If B is nonsingular B'B is symmetric and positive definite. So (17) belongs
to case (i).
Hereafter we will consider only case (i) with (10).

5. Generalized Gradient Method Applied to Solve Simultaneous Linear

Equations ,
Now we will apply our generalized gradient method to f(x) in (11). We have
af(x))2=b~ Ax, (19)
which we call residual vector . Let us set
r=b—Ax" (=dfx"2) (n=0,1,2,. ...), (20)
then from (8) we have
=y —a"Ap* n=0,1,2,....). (21)
Now, a* and B are determined as follows. From (6) we have
[, P1=1r"—a’Ap°, p°1. (22)
80
a®=[r" pU/1" Ap°]- | (23)
From (9’) we have
4 p71=0 (n=1,2,....), (24)
which with (21) becomes v
[r"—a"Ap", p»'1=0 =1,2,....). (25)
From (9) we have
[ p11=0 n=1,2,....) (26)
which with (21) becomes
[r"—a"Apr p1=0 (n=0,1,2, ....), (28)
S0
ar=[r pr)lp", Apr] (n=12,....). (30)
From (22), (25) and (26) we have
[App11=0 (n=1,2,....), (27)
which with (7) and (19) becomes ;
[ACr+pp" ), p"1=0 n=1,2,....), (29)
0
gr==2[p"" Ar/[p~", Ap*™"] (n=1,2,....). (31

(Note: In (23) because of positive definiteness of A[p°, Ap']x0 so long as
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P*=p°%0. In (30) and (31) p" a0, from (26) (7) and (19), so long as
7*7'20, therefore [p**, Ap*']x0.)
Let us summarize the procedures to solve Ax=p with our generalized grédient
method :
Select arbitrarily initial vector x° and let us set

P =r"=b—Ax°, (32)
and iterate

"t =x"4ampr, ‘ (33)

=y —a”Ap*, (34)

pn+1:27,n+1+‘8n+1p,, n=0,1,2, ....), (35)

with a”, " determined from (23) (30) and (31).
This algorithm is the conjugate gradient method itself.

6. Derivations of Properties of Conjugate Gradient Method

We get successively #° 7, .. .. and p° p', ..., in procedures of conjugate
gradient method, then #° ¢!, .. .. construct orthogonal system and p° p!, ....
construct A-orthogonal system. These properties guarantee that iteration termi-
nates within the number of dimension of x.

These properties were already proved in many text-books, say [1]. We will try
to derive these properties in view of our generalized gradient method.

Theorem
Series #°, ¢!, ... produced from (32)~(35) construct orthogonal system,
that is
[, #]1=0 for {27, (36)
and p% p', .... construct A-orthogonal system, that is
[p, Ap'1=0 for {=¢7. 37
Prooj
We will use mathematical induction. From (22), (32) and (27) we have
[, 7°]=0, (38)
[p% Ap'}=0. (39)
Assume orthogonality of #°, ', ... 7" and A-orthogonality of p° p', . . ., p"
Then we have
[ )=l e =0 (10)
from (35) (24) and (26). For {=0~n—1
U ril=lr"—aAp", '] (from (34))

=-—a'[Ap", 7] (from the assumption)

=—a[Ap.p =P (from (35))

=0 (from the assumption).
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Father from (27) we have

. [Apn+1 pn]:
For {=0~n—1
[Ap', p i 1=[Ap, ' =5 p"] (from (35))
=[Ap, r**1] (from the assumption)
=[ri—rtL ) a” (from (34))
=0 (from the assumption).
Thus we get orthogonality of #°, #!, .. ., 7! and A-orthogonality of p°, p,
, P qeed.
If the dimension of x is N, then #*=0 for some 7#7</N because of orthogonality
of #° 7', ...., . So these iteration terminates at most /N-th step.

7. Discussion
We can of couse apply our generalized gradient method to maximizing problem
of general concave functions. But we have had no such actual examples at hand.
So we could say, the main pourpose of this paper is to derive conjugate gradient
method from generalized gradient method the feature of which is double Marcoff

tvpe.
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