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Notes on the Recurrence Techniques for the Calculation
of Bessel Functions J,(x) and 7,(x)

SABURO MAKINOUCHI*

1. Introduction

J.C.P. Miller [1] originally devised the recurrence techniques for the calculation
of modified Bessel functions I.(x). Since then his algorithm has been applied to
the computation of Bessel functions J.(x), L(x) [2-8] and some other functions
with a similar behavior (for example, [9]).

F.W.J. Olver obtained the strict upper bounds for the errors in the values
yielded by the algorithm [10].

The purpose of this paper is to describe a method to determine the economical
points Mz for given x>0, from which the downward recursion processes start. in
order to generate /.(x) and L(x) accurate to p significant digits respectively. As
a consequence of them, the values of M are shown for p=30 and 0.1=x=<100.

In this paper, we denote hereafter the order by (v+n), where 0<y<1 and z
is a non-negative integer.

2. Economical Points Mz for Generating J..(x)
The process to find J,.,(x) by the Miller’s algorithm is known as follows:
First, we choose moderately a positive integer M larger than x and 5. Second-
ly, we construct a sequence of trial values [F,,,-,(x), m=M, M—1, ---, 1, by
the use of the recurrence relation

Fronei)= 2 (0) Fops() (1)

starting with the initial values

f"u+M+1(3C>:O, Fu+M(x) =a, ( 2 )

where ¢ is an arbitrary non-zero constant.

If M is taken sufficiently large, the trial value F,.,(x) so obtained turns out to
be approximately proportional to [,..,(x). Therefore, the approximation for J,.,(x)
is obtained by the relation

This paper first appeared in Japanese in Joho Shori (the Journal of the Information Processing
Society of Japan), Vol. 6, No. 4 (1965), pp. 194~201, and Vol. 6, No. 5 (1965), pp. 247-252.
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entitled “Note on the recurrence techniques for the calculation of Bessel functions J(x),” and
the second “Note on the recurrence techniques for the calculation of Bessel functions I(x).”
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Jorn(X)=F1n(X)] o, (3)

where the normalizing factor a, is given, for example, in the form

<_2 ) & +2m>

x T +m)F . (x)=ay, (4.1)

m=0

by making use of a positive even integer L=M. For y=0, (4.1) reduces to
L2 L2
Folx)+2 LI Fon(x)=2 L; Fonlx) =a. (4.2)
m= m=

Now, let us first consider the minimum value of M, Mmin, by which we can
guarantee a predetermined accuracy of the normalizing factor a, for given x.
Later, we shall discuss a method to determine an appropriate value Me(=Mmnin)
as easily as possible.

If we can obtain Mz, we may take

L=2[Msz/2], (5)
where [Mz/2] is the largest integer not greater than Ms/2.

Since F.im+i(x) can be treated as the linear combination of the regular and ir-

regular Bessel functions, we have

Fu4'4w+1(x> =q, u+M+1<x) +ﬂ Yu+M+1(x)

6
Foo) = uon0) Y a0 (¢)
Assuming [,.+.(x)%0, we write
L+M+1<X) Ym(x)
. = Cuvt M, vt 7
To)  Voomerl) &7 (D)
Using the first of (2), (6) and (7), we obtain
P‘ad—n x
[]w(x)—~—a<—)]/]u+u(x)=€vw, v <8 )
Since &y, y+a—0 as M-—oo, we have
Fv+n(x):ajv+n(x>~ ( 9 )
By the aid of an addition theorem, we obtain
2
(2] S LB ] ant) =a (10)
Let us consider the absolute error of a, in the form:
da=a—a«.
The relative error of a, can be written as follows:
Ao _ <,_g,>” U (v+-2m) o Svan(x)
a == x = M/l! P(V"i ) Y/4M+1( ) YJFZm(x)
2 >” (v+2m) ‘
2. +2m) | o). 11.
+< 2 ) it ! (v +1m2)Jyrom(x) (11. 1)
For v=0, we write —Ai:<ﬁaci> . Then, Eq. (11.1) reduces to
=0
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da You(x) < Jen(x)
) =2]us . 1.2
( o ),: ]M 1(x)[m =0 YM+1(X)+m=[§/2]+1 ]M+1(x)jl (1 )
If p»x, then
ex
()
Jux)~ ‘/Zﬂ . 2
e ey
Yix)~ \/np<2p ’
and if m is a large enough positive integer, we get
T(w+m)~m’T(m) 13)

for 0<p<1.

From (11.1) with the aids of (12) and (13), it is clear that da/a>0, and that
daja is a monotone decreasing function of v, since M>x (see, Example 2).
Therefore, Mumin which satisfies the condition

daja<0.5x107* (14)

for any v must be determined so as to satisfy the inequality
<ﬂ> <0.5x1072, (15)
o Jy=0

In order to find about three correct significant digits in (da/a),=¢, we may take
several members of each term in the brackets on the right hand side of (11.2).
That is to say, we have only to compute the last several members of the first
term and the first several members of the second term. For the present purpose
it is only necessary to obtain about three correct significant digits in Jy.4i(x) by
the use of a mathematical table or any suitable approximation.

Next, let us consider how to determine an approximation Mz for Mu, using a
function [y.i(x) alone and not using other functions [5,.(x), Yem(x) and Viri(x).

Since M»x, by writing '

x2=u and M-—u=v,
we obtain
Yult) . u  Yu-u(x) M
YM+1(x) v’ YM(x) u—1’
Jaa1(x) U Jarea(x) U
Ju(x) v+1’ ]M+1(x) v+2°
With the aids of these inequalities and (11.2), we find that
(i) if M is even,

da u ud ”
<_> o<2]M“(x)[7 TR oy DT ISR -] as.y

& /y=
and
(ii) if M is odd,
Aa 2 2
<7> <2jM+1(x)[1+v(v Tt +2”)‘(U 5t ] (16.2)
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Table 1. Mg and Ng for generating Josa(x).
(E.g., Mg=6, Ng=3 for p=10 and x=0.3)
(With respect to Nk, see paragraph 3)

N 01 0.2 0.3 04 | 05 0.6 0.7 08 0.9
10 53) | 6(4) | 6(3) | 8(5) | 85 | 8(5) | 8(5) |10(D) |10(D)
20 [10(6) |11(6) |12(7) |13(8) |14(®) |14(®) [15(9) |16(10) | 16 (10)
30

N
P

14 (8) |16(9) |17 (10) | 18 (10) | 20 (12) | 20 (12) | 20 (11) | 22 (13) | 22 (13)

1 2 3 4 5 6 7 8 9

10 10(6) |13(9) |16(11)|18(13) {20 (14) |21 (A5) | 23 (A7) | 24 (A7) | 26 (19)

20 [16(9) |20012) | 24(16) | 26 (17) | 30 (20) | 32 (22) | 34 (23) | 36 (25) | 38 (27)

30 22 (13) | 28 (17) | 32 (20) | 35 (22) | 38 (25) | 40 (26) | 44 (30) | 46 (31) | 48 (33)

X 10 20 30 40 50 60 70 80 90 100

10 | 28(21) | 42 (33) | 55 (45) | 68 (57)| 80 (68)| 92 (79) {103 (90) [115 (101)]126 (111)[138 (123)

20 | 40 (28) | 56 (41) | 72 (56) | 86 (68)| 99 (80)[112 (92) [124 (103)137 (115)[149 (126)161 (137)

30 | 50 (34) | 69 (50) | 86 (64) | 101 (77)|115 (90) {129 (102)[142 (114156 (127)[168 (137)]181 (150)

Hence, using only Ju.i(x) accurate to a few significant digits, we can find the
minimum value of M, ie. Me, for given x which makes the right hand side of
(16.1) or (16.2) smaller than 0.5X107?. In this procedure, we may take several
terms in the blackets on the right hand side of (16.1) or (16.2). Consequently,
one can obtain easily an approximation Mz for Mumin by the methods described
above.

We have obtained the values of Mz for p=9, 10, 18, 20, 30 and 0.01<x<100.
Some of them are shown in Table 1. The values of Mz for p=10 agree entirely
with the optimum values of } obtained experimentally by L. Uoki [6].

3. The Ervor in the Approximation of Jv+nx)
If M>=Ms, daja<0.5%x107?. With the aid of (8), neglecting the terms of
higher order than (da/a)?, we have

L) 1=, w1+ 4) -

a
For given x and M, let us consider the largest value of », NN, which satisfies
[ €vta, vin] <0.5X 1072, (18)

If n<N, (daja)eysm,v+n is negligible small because of the above definitions.
Therefore, we may write the absolute error ,., in an approximation of J[i..(x)
as follows:

Fv+n(x)

24

A"+’f = Jyanlx)—
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z_]y+n(36’)<€wuw, v+n—%’>- (19)
Case 1:  J,ra(2)x0.
The relative error 8+, in Fy.,(x)/ay is written in the form:
5v+n%€v+M, V+n_%- (20)

It is obvious that

0<ev+M, v+n<0.5><10_p fOl‘ xéngN,
4
< l £
a
When M= Me(z M), therefore, we find from (20) that

|8y4+a] <0.5x107* for n<N.

In other words, we can obtain approximation of /,,(x) accurate to p significant
digits for 0<u<N by making use of M=M:.

Using (12), we can find that &,.y,,+,» is a monotone decreasing function of y.
Hence we shall denote again by N the largest value of » which satisfies the
inequality

for n<x.

€v+M, v+an

Jun(x) _ Yau(x)
Jix)  Yaunlx)
for given p, x and M. We write N=N: when AM=DNM:, and show also the
values of Nk in Table 1.
Case 2:  [,+.,(x)~0.
In this case, the absolute error of F,.,(x)/a; must be considered. From (19)
we get

<0.5x10? @1

— ]v+M+1(x) _ 4“_
dywr Yv+M+1(X) Ywn(x) ]W”(x) a’

If x is a zero of J,.,(x) which is accurate to p significant digits, then

| Jy+a(x) | = 1072
On the other hand, da/a<0.5x10"? and -{,%Yw,,(x) is smaller than or
v+M+1
nearly equal to 10-2¢ for M = Mze. Therefore, |4,.,| is nearly equal to 10-2r,
Moreover, we can easily find that

Jon) — Fora(x)  dyew
Jorar1(®)  Frran(x) = Joine1(%) )
Then, the magnitude of the difference between Jy.,(¥)/Jy+nr1(x) and Fyun(X)/Fysne1(x)
is also as small as the order of 107%,
It is interesting to note that a zero of J,..(x) accurate to about 2p significant
digits can be obtained by using J/=M: which guarantees the values of functions
Jotne (%), ¥=1, 2, .-+, accurate only to p significant digits.
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4. A Method for Evaluating the Zeros of J+«x)

Applying the recurrence technique, we consider now to evaluate the zeros of
Jo+n(%) by the Newton’s iteration [11].

If x: is an approximation for a zero of J,.,(x), a better approximation x;+; can
be obtained in the form*:

v+ul Xi .
xi+1:xi__{/vT((xt’)), Z:Oa 19 25 ttte (22)

As is known,

Jron®) =5 rnes(0) = Frura(2),
]v+n—1(.’?€i)"f§«‘ “']v+n+1(xi)~

By these reasons, Eq. (22) may be written approximately in the form:

s Fv+n(xi>
Xi+1=Xi +—”—“Fy+”+1(xi) .
The procedure of computing the second term on the right hand side of (23) is as
follows :
(i) Choose M slightly larger than Mz for given p and x> x:, when we want
to evaluate a zero accurate to 2p significant digits.

(23)

(ii) Construct a sequence of trial values

Fv+M+x(xi)a Fv+M(Xi), Fv+M—l(xi)a Tty Fy+,.+1(xi), Fm(x,-) (24*)

discarding the values corresponding to the functions of smaller order than (v+#).

(iii) Divide Fisu(x:) by Fyrnei(2i).

Thus there is no need to compute the function values themselves. This is very
convenient for saving the computing time and simplifying the program especially
when p=0. Moreover, it must be noted that we can easily determine the number
of positive zeros (x0) of [,..(x) on a given interval by making use of such a
sequence as (24), since the sequence of functions {],+.(x)} constructs a Sturm’s
chain.

5. Economical Points Mz for Generating I.+.(x)

The economical points Mz for generating [,..(x) can be determined essentially
in the same way that is described in paragraph 2. The details of the process will
be shown below.

Now, let us consider the process to find I.,(x) by the Miller’s algorithm. For
given x and 7, we first choose moderately a positive integer M >n. Next, we
construct a sequence of trial values Gyin-1(x), m=M, M—1, ---, 1, by the use
of the recurrence relation

va_l(x)=3<—”—“;ﬂ)cw<x)+cv+mﬂ<x), @25)

* A starting value x, is easily obtained by the McMahon series,
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starting with the initial values

G»+M+1(x)=0, Gy+M(x)=a. (26)
Since M is taken appropriately large, we can write
Ln(%) = Gyin()/ - @7)
In this case, we assume that the normalizing factor «, is given by the relation
21040 L Chm) .
o e e+ e G =, (28.1)

using a positive integer [,< M. For v=0, (28.1) reduces to

(Gl +2 ézlcm(@):z Ei:,(;(e""Gm(x))zao. (28.2)

Let us consider to determine an optimum value Mz not smaller than the mini-
mum value of A/, which guarantees the normalizing factor «, accurate to p signi-
ficant digits for given x. If M is determined, we may take

L = ME (29)
Denoting K, +n(2)=(—)"K,+u(x), we may write
Gv+M+1(x) = aL+M+1(x) -+ ﬁ—l_(wMﬂ(x)

— 3
G = aLon() + PR () (30)
Assuming I.,(x)*0, we introduce again the notation
¢ — L+M+1(x) __Kw”(x)
v v Im(x) Ky+M+1(x)
- L+M+1(x) Kw,,(x)
— (— \M-n+1 R
( / L+n(9€) Ku+M+1(x) (31)
With the aids of the first of (26), (30) and (31), we obtain
(L= ] /1 )=y o (32)

Since &,+y, ,+n—0 as M-—oo, we have
Goonx)=a Lia(x). (33)
Following an addition theorem, we have

2V T(14y) & (vtm)
(“) T(1+2y) mz=o m!

X
Denoting by da the absolute error in the approximation of « as before, we can

TQyv+m)ae *Lin(x)=a. (34)

write

A(X _ Aa’l + Aag, (35)

a o« «

_A_al_:2< 2 )“ I'(1+y) Z (U+7’l’l) T2y +m)e*— u+M+1(x) i) g

TA+2v) = Ku+M+1(x) von(x) (36.1)
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Aoy —2(&)” I'l+y) &

a  \Nx/ TA+2v) S5
Then it is clear that da,/a<0, da,/a>0 and |da;/a|<|das/a|. Therefore, we see
that da/a>0.

If u>x, then

»(”%{’”—-r(zwm)(e-x o). (36.2)

L~ )

pis ex \*

Koo~ 5)

From (35) with the aids of (13) and (37), it is clear that da/a is a monotone
increasing function of v when M»x. In some cases when ] is not large enough

37)

compared with x, da/a is also a monotone increasing function of v (see, Example
3). Accordingly, we see that Ja/a takes the maximum value as y—1 for given x
and M.

Substituting y=1 into (36.1) and (36. 2) respectively, we have

@L —px . KM+1(X) KM(X) .
% e L) (M 1)+ Mt o B ] (3.1)
A_Cé:z_ = [(M~+2)Ly:(x)+(M+ ) Lrio(0) + 20 45(x) + -] (38.2)

As a behavior of modified Bessel functions, we have the inequalities as follows:

Lot+1(%) > Logv2( %) > Dngaa() > <5
KM+2(JC) > KM+1(x) > KM(x) >
Then, with the aids of (38.1) and (38.2) we obtain

——Aai<e‘”[(M+2)IM+1(x)+(M+3)IM+z(x)]- (39)

If we get In+i(x) and I.o(x) accurate to a few significant figures respectively

by the use of any mathematical table or approximating formula, then we can
easily determine the minimum of M which satisfies

€~x[(M+ 2)1M+1(x) +<M+ 3)IM+2(x)] <0.25 %1072, (4-0)

The minimum value of M so obtained is the value for M described before, and
it satisfies the inequality

da)a<0.25 X107 (41)

for any v. From (39) and (40), it is clear that Mg is somewhat larger than or
equal to the minimum of Jf which satisfies the inequality (41).

We have obtained the values of M for p=9, 10, 18, 20, 30 and 0.01=x=100.
Some of them are indicated in Table 2. For x=50 and comparatively small p, we
find that M=<x. It must be noted that there is no such a case for J,..(x).

The reason why the upper bound for Ja/a has been chosen to be equal to
0.25%x107# will be discussed in the next paragraph.
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Table 2. Mzs and N for generating [.(x).
(E.g., Me=8, Ne=5 for p=10 and x=0.3)
(With respect to N, see paragraph 6)

T o1 ez | 03 | o4 | 05 | 06 | 07 | 08 | 09

10 6 (4) 7() 8 (5) 8 (5 9 (6) 9(6) [10(7) |10(7) | 10(6)
20 106) |12(7) [13(8) [14(9) |15(9) |15(9 |16(10) |17 (11) |17 (1)

30 |15(9) [17.(10) | 18 (11) | 19 (11) | 20 (12) | 21 (13) | 22 (14) | 23 (14) | 23 (14)

N 1 2 3 4 5 6 7 8 9

10 |11(7) |14Q0) | 16 (11) | 17 (11) | 19 (13) | 20 (14) | 22 (16) | 23 (16) | 24 (17)

20 18 (12) | 22 (14) | 24 (15) | 27 (18) | 29 (19) | 31 (21) | 33 (22) | 34 (23) | 36 (24)

30 | 24(15) | 29 (18) | 32 (20) | 35 (22) | 38 (25) | 40 (26) | 42 (27) | 44 (29) | 46 (30)
N 10 20 30 40 50 60 70 80 90 100
10 | 25(17) | 34 (24) | 41 (29) | 47 (34) | 52 (38) | 57 (41)| 61 (44)| 65 (47)| 69 (50)| 73 (53)
20 | 38(26) | 50 (35) | 59 (41) | 67 (47) | 74 (52) | 80 (56)| 86 (61)| 92 (65)| 97 (69)|102 (73)
30 |48 (32) | 63 (43) | 74 (51) | 84 (58) | 92 (64) | 100 (70) | 107 (75) [ 113 (79) | 120 (84) | 126 (89)

6. The Error in the Approximation of IL+.(x)
If M=Msz, then daja<0.25x1072. Neglecting the terms of higher order than
(daja)?, we find that

Gl 1 ote 1 Lo
e ANEO BN (B (412)

Now, we denote by N the largest value of # which holds
|€,41, v+s] < 0.25 X 1072 (43)

for given p, x and M. Then, we can discard (da/a)€,+u,.,+» because of the above
definitions. So that, the absolute error 4,., in the approximation G,.,(x)/a, for
Lin(x) is written as follows:

Au+n = Iv+n(X)“‘ ‘Q‘I‘;';(L)

~[,1n(%) <8u+M, vtn ™ %‘) (44)
Therefore, the relative error in G,..(x)/ay can be represented in the form:
4
Ot ™ FE b 1ty vbn— = (45)
a .
. Then, we may consider

da

<le, FENECLE
,5u+n,——’8J+M; vt ,+ a

(46)
Accordingly, from (46) with the aids of (41) and (43) we find that
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[6,+4]<0.5x107? for n<N.

Namely, if MzM; we can generate [,.,(x) accurate to p significant digits for
0=n=N.

It is clear that |€,+u, .+, is also a monotone decreasing function of . Hence, we
denote again by /N the largest value of # which holds
IM+1(X) Kn()() -
0.25x 1072, 47
In(X) KM+1(X) < ( )

We write N=Ne when M=Mze for given p and x, and show also the values of
Nt in Table 2.

Let us now consider the minimum of M, M., by which we can obtain I,.,(x)
accurate to p significant digits. That is to say, suppose that M, satisfies the
; condition

|8,4n] < 0.5 X 1072 (48)
for any v when p and x are given. We will show the relation M. and M.
If #&N, then |&,+u, +x|<|da/al. So that we find from (46)

0.+al=|da/a| for n< N.

Therefore, M, may hold
daja<0.5x107? (49)

as well as (48). However, we have determined M so as to satisfy the inequality
daja<0.25x107?. Consequently, it is clear that Mz is nearly equal to M., and
that ME;Mmin-

Since |8,+a|=| .11, 44l +|da/al, we are not able to set an upper bound for | &,+a, |
under the conditions (48) and (49). In other words, it is actually difficult in these
circumstances to determine the largest value of order #, ie. N.

Table 3. Computed values of J.(30), using M=55, L=54,

n Fn(go)/ao An 51; EMn
55 5.3605 54054 32144 (—11) 5.06 (—12) 8.62 (— 2) 8.62 (— 2)
54 1.9655 36486 58453 (—10) 1.54 (—12) 7.76 (— 3) 7.76 (— 3)
53 6.5398 75946 27216 (—10) 4.78 (—13) 731 (— 4) 731 (— 4)
46 1.4463 11623 21019 (— 6) 213 (—16) 1.47 (—10) 1.88 (—10)
45 39157 69889 72646 (— 6) —5.37 (—17) —1.37 (—11) 2.66 (—11)
44 1.0300 99804 59692 (— 5) —3.74 (—16) —3.63 (—11) 4.00 (—12)
43 26300 49104 51165 (— 5) —1.04 (-15) —3.97 (-11) 6.42 (—13)
42 6.5093 74295 00315 (— 5) —2.62 (—15) —4.02 (—11) 1.10 (—13)
a1 15506 19892 14972 (— 4) | —6.29(=15) | —4.03 (—11) 2,02 (—14)
2 7.8451 24607 64292 (— 2) —3.16 (—12) —4.03 (—11) ~6.73 (—20)
1 —1.1875 10626 21412 (— 1) 4.79 (—12) —4.03 (—11) 3.05 (—20)
0 —8.6367 98358 45234 (— 2) 348 (—12) —4.03 (—11) —5.83 (—20)




NOTES ON THE RECURRENCE TECHNIQUES FOR THE CALCULATION OF J.(x) AND L(x) 57

By this reason, we have determined Me and N setting the upper bounds for
Adafa and | &,4p, ,+4| to be equal to 0.25X107? respectively.

7. Numerical Examples

Example 1. Using M=55 and L=>54, let us find J,(30). The computed
results are shown in Table 3. It is seen that the ten significant digits of J. (30)
are accurate for 0=7=<45. For n=41, | €y, .| are so small that J. are nearly equal
to a constant —4.03 107!, Consequently, da/a=4.03x107!! is obtained in this
example.

Example 2. Using again M=55 and L=54, let us find J,(30) for v=0, !/,
s, 3/y and 3%/,0. The results are shown in Table 4. It is clear that the larger
the value of v, the smaller the value of da/a (=]6.]), and that ], (30) are obtained
accurately to ten significant digits.

Example 3. The values of [,(100), which are correct at least to ten significant
digits for v=0, !/, /5, 3/s %/4 and °9/,q, are shown in Table 5. These computed
values are obtained by making use of M=L=73 (see, Table 2). It is clear
that the value of da/a (=]4,]) becomes larger with increasing v, and that all values
of da/a are smaller than 2.5x107%,

8. Conclusion

To determine Mz and N for given p and x is very convenient for the purpose
of obtaining the predetermined accuracy for J,..(x) and I..(x) yielded by the
Miller’s algorithm, and making these function tables by a computer.

Using M=Mze and Ng for p=30 shown in Tables 1 and 2, we have obtained
the mathematical tables of Ju.(x), J.(x), I«(x) and [(x) for the ranges

Table 4. Computed values of [.(30), using M=55, L=54,

v Fu(30)/ato 14| 18]

0 —8.6367 98358 45234 (—2) 3.48 (—12) 4.03 (—11)
1/4 —1.2460 44300 13096 (—1) 4.20 (—12) 344 (—11)
1/2 —14392 96533 74639 (—1) 4.24 (—12) 295 (—11)
3/4 —14176 16910 44798 (—1) 3,57 (—12) 252 (—11)
39/40 —1.2190 67728 79151 (—1) 2,67 (—12) 2.19 (—11)

Table 5. Computed values of I,(100), using M=L=73,

v G.(100)/ay 14| 18]

0 1.0737 51707 13156 42) 4.82 (29) 4.48 (—13)
1/4 1.0734 14516 64668 (42) 1.35 (30) 1.26 (—12)
1/2 1.0724 03582 54554 42) 3.23 (30) 3.01 (—12)
3/4 1.0707 20814 87736 42) 6.94 (30) 648 (—12)

39/40 1.0686 34505 80441 42) 1.30 31) 1.21 (—11)

99/100 1.0684 76234 00686 (42) 1.35 (31) 1.26 (—~11)
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5
£=0.01(0.01)0.1(0.1)1(1)10(10)100.

The calculations of these functions were carried out on the NEAC-2206 at the
Computing Center of Osaka University. All computations were performed with
triple-length floating point arithmetic, i.e. thirty-three decimal digits. Accordingly,
the computed results are accurate to twenty-nine significant digits at least.

Although no details are shown in this paper, we have also obtained the mathematical
tables of Y,..(x) and K,..(x) accurate to twenty-nine places respectively. The
tables of Y,..(x) are designed in just the same way as in the case of the tables
of J,+.(x). The values of K,..(x) are tabulated for the same ranges of (v+#) and
x(=2) as those for which the values of I,..(x) are covered.
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