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A Numerical Method for Boundary Value Problems
of Nonlinear Ordinary Differential Equations

MASARU TAKATA*

1. Introduction

Many problems in engineering are reduced to the form of boundary value prob-
lems of non-linear ordinary differential equations (abreviated in the followings as
NLDE). The cut and try method as an initial value problem may succeed in some
cases. At the present time Dynamic programming gives the solution not in practice
but in principle. It seems rather ‘an oracle’ than a method.

The following is a numerical one which approximates the NLDE in the form of
finite differences and solves them iteratively as a linear simulteneous equations. It
is very effective, especially for the case of second or third order NLDE, which ap-
pears in chemical engineering or heat convection problem. In these cases the
coefficient matrix of the reduced equations is a band matrix of width three and the
solution is obtained by Gauss elimination method which is reduced to the recur-
rence form. The method is presented in the following with three examples.

2. Chemical Reactor Problem
The first example is a chemical reactor problem cited from a text of numerical
methods [1] and is expressed as

I & df e
P da dz Rf"=0, 0<z<1.0 2.1
with boundary conditions
at 1 df
z=0: 1.0=f— Pe dz. 22
ot =10: Y —o,
dz

where Pe: Peclect number,

R : constant involving reaction constant,

z: dimensionless axial-distance parameter,

f: fraction of reactant remaining.
We consider the case s =2. Dividing the interval of z (0, 1.0), we obtain the
following finite-difference representations with mesh size /2 :

This paper first appeared in Japanese in Joho Shori (the Journal of the Information Processing
Society of Japan), Vol. 6, No. 1 (1965), pp. 21-29.
* Faculty of Engineering, Kyushu University.
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1 Sor1—2 futfums _Jwri=fom
Pe 72 24 2.3)
—Rf:?=0, (=0, 1, ...., N)
1
1.O=,ﬂ)—”2p—eh—(f1'f—1)a} 2.4)
fN+1=fN—x-

The system to solve will now be a nonlinear set of algebraic simultaneous equations
(quadratic equations in this case). The author of the text cited above tried to
solve them from this point of view, but he could not obtain sufficient convergence.
The number of iterations amounted to more than thousands especially for small
mesh size /.

This is due to the lack of sense of order estimation which is important for the
engineer or the numerical analysist. We shall now solve these equations reducing
to the following linearized form :

ﬁ)+b0ﬁ:d0’
fota fi+bifo=d;,

........

2.5
ﬁx—l+a"ﬁt+b"ﬁ;+1:dﬂo ( )
Sn-1tanfv=dn,
where
A= 19
ar=—2+RPeh*f)/(1+ Peh/2),
(%=1, 2; e e e N""l)
an=—(2+ RPeh*fv)/2,
bo=—2/(24+(1+Peh/2)+2 Peh+ R Pehf,), 2.6)

b»= (1~ Peh/2)/(1 4 Peh/2)=b,
n=1,2, ...., N=1)

do=(1+Peh/2)«2 Peh/(2+(1+ Peh/2)s
2 Peh+ R Pehf,),

d»=0, (n=1,2, ...., N)

Since most of these coefficients do contain the variable f, these actully are not
linear equations. From the point of physical considerations, however, it should be
noted that the terms with f multiplied by /42 would be sufficiently small in com-
parison with the other term, 1 or 2. Hence, substituting some assumed values for
these terms, we solve the equations as a set of simultaneous linear equations.

Fortunately, the Gauss elimination method in this case is reduced to Thomas
method as follows :
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qo=bo, So=d,
W=An—Gn-15 gn=(dn“gn—1)/W9 (2. 7)
g=bsJw, n=1,2, ...., N)

Ju=gn,

Fo=8n—Quforsy, m=N—1, N=2, ..., 1, 0)}

The new values of f are now substituted for the old ones. The iterations are
repeated until the desired convergence is obtained.

Nnmerical results are shown in Table 1, where the reader will see that the
number o iterations is very small compared with thousands. In all calculations the
assumed values for f are 0.5. The result shows the method to be effective in
practice.

(2.8)

3. Natural Convection above a Horizontal Line Heat Source

This problem in the laminar stationary flow is formulated in the form of non-
linear partial differential equations with respect to the fluid velocity and tempera-
ture, which are derived from the equation of continuity of the fluid, Navier-Stokes
equation and the energy balance. They, however, are reduced to the following
form of boundary value problem of NLDE, when the stream function is introduced
and similarity of the velocity field and the temperature field in the laminar boundary
layer is assumed [2].

S @B —(f5+h=0, 3.1)

" [
W’ +(3/5)Pr(fh) =0, (3.2)
Table 1.
z 0.1 0.05 0.02 0.01 0.005
h f f f Residuals I Residuals f Residuals
1] .6365360217 6367261494 6367745870 147x10-8 .6367810170 .218x10-8 6367796135 460 10-10
0.1 6024243277 6025805761 6026189805 .0 .6026239140 | —.100x10-¥ .6026218710 | —.800x10-¢
0.2 5723627775 5724965171 .5725281240 | —.100x10-8 .5725320355 | —.700x10-9 5725295050 .100x10-9
0.3 5460342254 .5461552162 .5461828115 | —.190x10-8 .5461860766 | —.190x 10-8 .5461831875 | —.300x10-9
0.4 5232117201 5233286422 5233547030 | —.900x 10-9 5233576795 | —.300x10-9 5233545695 .200x10-9
0.5 .5037505831 .5038714629 5038982910 .100x 10-9 5039013210 0 .5038981090 | —.160x10-8
0.6 .4875838947 ABT7164772 4877463619 | —.300%10-9 4877497120 0 4877465146 .100x 10-9
0.7 4747210417 4748731251 4749081914 | —.200Xx 109~ .4749123066 | —.100x 10-8 .4749092049 .600 % 10-9
0.8 4652492107 4654289766 4654716419 .100x10-9 4654766726 | —.320x10-8 4654738972 .400x10-9
0.9 4593379166 4595542730 4596070997 | —.490x10-8 4596131785 710X 10-8 .4596110349 | —.160x10-8
1.0 4572468904 4575098629 4575754229 170X 15-6 4575836573 | —.700x10-9 4575797316 .338x10-7
K 10 13 12 32 23
EPS 10-4 10-5 10-6 10-7 10-7

K: number of iterations, EPS: constant for ‘convergence test
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with boundary conditions

at £=0:1=0, /=0, i’ =0,
g=00:f'=0, h=0 }

where the independent variable & is expressed by that of original partial equations

and f and /; are derived from the stream function and the temperature respectively,

and Pr is the Prandtle number. Besides these homogeneous equations, the follow-

ing quantity [ is given by load condition of the heat source and it is normalized
to

(3. 3a, b)

oo
[:S—-oohf, de=1 3.4)
By the law of conservation of momentum, the relation
2% rae= (" nas 3.5)

is obtained and it is useful for the check of accuracy.
Now, reformulating (3.1)~(3.4) by

S=06/3)F, h=(5/3)H (3.6)
we have

F"+FF"—(F"3+H=0, 3.1)

H +Pr(FH)Y =0, (3.2

£=0: F=0, F"=0, H'=0, ’

f—co: F'=0, H=0, } (3. 3’a, b)

2

[ F Hae=(-2) 3. 4)

Put ¢=aX, F=bhY, H=cZ 3.7

where a, b and ¢ are constants. Replacing the variables in (3.1') (3.2) by (3.7),
we have

b gy B LB ,
Y YV = (Y eZ=0, (3.17)
<7+ P Y (yzy=o, (3.27)

where (') represents the differentiation with respect to X. If we assume the
relations

ab=1, b*=a’, (3.8)
then the set of equations (3.1”)~(3.3”) are reduced to the same form as (3.1)~
(3.3"), besides that the variables &, F and H are replaced by X, Y and Z respec-
tively.

Y"+YY"—(Y")?3+Z=0, 3.9

Z'+Pr(YZ)y=0, (3.10)

X=0:Y=0, Y"=0, Z=0,}

X=00:Y'=0, Z7=0. (3.11a, b)
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Since the combination of @, b and ¢ is arbitrary, the solution of (3.1”)~(3.3”) is

not unique. Hence, choosing a relevant value of either Y7(0) or Z(0), if we could

obtain a set of values Y and Z satisfying (3.11), then it is one of solutions. We,

then, calculate the numerical value of the integral gm Y’ZdX=] by just obtained
0

values of Y and Z. From (3.4') and (3.7) we have
(" Has=0e|" v’ zax="1{2)
Jo 0 2\ ’
hence beJ=9/50 (3.12)
and we have )

@=(9/50 J)~1/5, b=(9/50 J)/5, ¢=(9/50 J)*/5

The solution of (3.1)~(3.3) is now written as

Y

50 7 50 ]
, (3.13)
/9 9% , 9 36 ,
H:Q'50]> 2 F‘( 50]) Y.

The numerical procedure to solve (3.9) (3.11) is described in the following. In-
tegration of (3.10) noting a condition of (3.11) yields

Z+PrYZ=0, or Z'|Z=—PrY.

hence Z=1Z, exp {—Prg: YdX}. (3.14)
By substitation, —yr_p or y={" pax, (3.15)
(3.9) becomes

P+ YP —(P¥3+Zyexp (— YL)=0, (316)
where YL="Pr| YdX. (3.17)

Finite difference approximation is now obtained. From Y”=0 at X=0, we have
P =P,
hence 2+(W2[3)Po)Po—2 Pi=Zoh*, (3.18)
and generally at X=nh
—(1=(A/2)Y)Pos +(2+(R[3)Pr) Pa
—(+(/2)Ya)Prn=Zoh* exp (— YL,), (3.19)

with the condition for sufficiently large value of N, Py=0. The method is now
similar to the case for § 2 and the process will be briefly described below.

1) Assume sufficiently large integer value [N for relevant mesh width / to satisfy
Px=0.

2) Assume the approximate values for P°and Z;. We used P°=(1—tanh?*(X/2))/2*
and Z,=0.3.

3) Calculate Y., YL, by (3.15) and (3.17).

* An analytical solution in the closed form is obtained for the case P,=2.
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4) Substitute them for the relevant terms in (3.19) and solve (3.18) and (3.19)
by Thomas method and get new values of P.

5) Calculate Y. and YL. and compare them with the assumed or previous
values in the preceding iteration. If the desired coincidence has been met, proceed
to the following process and if not repeat the processes from 4) to 5).

6) Check the condition |Pwy|<e¢ (¢ is a small positive number). = If it is not
satisfied, increase [V and go to the process 4) supplementlng the values P for the
new mesh points.

7) If the condition is satisfied, calculate J =S:J Y’Zd X and normalize it. Then

we have the solution &, f, /2 and 7.

The program was written in SIP, a symbolic input programming language, and
later in ALGOLIP, a subset of ALGOL, prepared for HIPAC 101B and OKITAC
5090A respectively. Prior to the production run, the result for the case Pr—2
was compared with the one calculated according to the closed form solution :

the analytic solution: F’(0)=0.502, H(0)=0.336,

the numerical result: F/(0)=0.503, H(0)=0.337.

The coinsidence was satisfactory. For another cases the accuracy was checked by

Table 2.
Machine
P, 4. N EPS K time (min) | I A
1.0 2=+ | 200 1075 21 22 0.4695 0.4720
20 (2 80 2-18 8 26+34)
- 27+ | 200 1075 20 23
3.0 2+ | 200 103 19 22 0.4401 0.4376
5.0 24 | 200 10-5 17 19 0.4377 0.4317
@ | 160 2-18 12 45+65)
10.0 24 | 200 1075 14 15 0.4442 0.4313
30.0 2-4 1 200 10-5 16 15 0.4729 0.4423
100.0 27 | 200 10-3 14 15 0.5251 0.4591
300.0 2-4 | 200 1073 17 13 0.5899 0.4650
1000.0 274 | 200 10-% 17 13 0.7060 0.4215
@ 190 2-18 12 524-76)
0.01 21 | 200 105 96 % 0.7702 0.7850
0.03 274 | 200 10-5 25 25 0.6768 0.6957
0.1 274 | 200 1075 29 25 0.6100 0.6157
0.3 27+ | 200 10-5 24 25 0.5353 0.5404
@ 80 2-13 9 36+36)
0.7 24 | 200 105 %3 % 0.4860 0.4896

The values in parenthesis are computed by HIPAC-101B (drum machine) and they are shown in
the form of the pure machine time plus the printing time.

Iy and Iy are the values to check the accuracy of the calculations by the law of conservation
of momentum, equ. (3.5).
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(3.5) and it was good too, except for large values of Pr. These are shown in Table 2.

In some cases the process had diverged, because the mesh size was not sufficiently
small and it was restricted by memory capacity. The trouble was overcome by the
trick that the average value of Y, of old and new one just obtained in the pre-
ceeding iteration was adopted for the value to be substitued for (3.19) instead of
new one as it was.

4. Natural Convection above a Point Heat Source
The following equations are to be solved :

A i N O A P

et (5 )+h—0, (4.1)
(EWY +Pr(fh)=0, (4. 2)
0. L o (LN o =

¢=0:-L—L _0,< =0, =0,

, (4.3)
E=o0 :—]g,—=0, h=0.

Since the fluid velocity at £=0 must be finite, f’/¢ is to be finite, too. Hence
£/(0)=0 and f(0)=0. The normalizing condition is

v

S: hf'de=1 e (4. 4)
For an arbitrary solution, the integration for normalizing‘iis
I vzax=J S 4.5)

Then we have

e=J]"*X, =Y, h=]‘1Z»} 4.6
Fle=JYIX, (4.6
and the following equations of the same form as (4.1)~(4.3) are obtained

Y Y—1 / YV -
(XZ'Y+Pr(YZ)=0, (4.8)

. Y’ Y/ _ Y/ /— .
X=0: S ) -O,( X )-—0, Z'=0,

Y’ 4.9)

X:OO : -—){—_—_O, Z: 0.

Since the procedure is similar to the case for line heat source, more explanations
are deleted. The results were satisfactory, too.

5. Conclusion and Discussion

The method described here is essentially a finite difference method. The non-
linear equations are linearized according to the order estimation of the variable or
parameters and are solved repeatedly as a linear simultaneous equations until the
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sufficient convergence is obtained. The results were satisfactory for all cases tested
here. It shows that the sense of order estimation and the understanding of the
physical meaning are important.
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