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An Efficient Algorithm for Chebyshev Expansion
Tatsuo Torn* and SaBuro MAKINOUCHI*

1. Introduction
We expand a given function f(z), “well-behaved” over the range —1<x<l, by a

series of Chebyshev polynomials :

F@=3 aTa) (1a)
where

ak=%SZ( £ cos 6) cos k040, Ti(x)=cos (k cos™ ). (1b)

A prime indicates that the first term of the series needs to be halved.
Let us consider to evaluate all the coefficients {2z} by numerical quadrature with preas-
signed accuracy and to reduce the number of operations.
The following two summation rules are known.
. 0, s=2mn=*r, r=n and sx2mntr
72{31 Tra)Ta)={ (=1, s=2mn-tr, r%0, n (2)
(=1)"%x2, s=2mn=*r, r=0

xp=cos ((2k—1)/2n)n

0, sx2mn+tr
%kgo“ Tz Tolzs') =11, s=2mnr, r0,n (3)
- 2, s=2mn+xr, r=0,n

r=0,1, yn; m=0,1,2, ceeee
xy' = cos (k/n)T.
A double prime in the above equality means that the first and the last terms are halved.

Following the summation rule (2) and (3), we have classical Chebyshev expansion

f(z) =é;' b Tr(), (4a)
br =23} Ty(zs) f(an), (4b)
N k=1

and the other Chebyshev expansion

Fl@)= 2" er Tr(a), Ga)
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=23 T () flad) 5 b)
n k=0

respectively.

It is easily seen that formulas (4b) and (5b) are the approximations of integral (1b) by
midpoint rule and by trapezoidal rule, in respect of argument 0. Each coefficient b, and ¢,
will be abbreviately called midpoint coefficient and trapezoidal coefficient, respectively.

On the errors of coefficients & and ¢, following relations
br—ar=—(asn-r~+aza+r)+(@an-r +Qan+r)— - , (6a)
cr—ar=(azn-r+aza+r)+(Qun-r=+asner)+- 6Db)

are known from the two summation rules mentioned above.

Conbining these two relations (6a) and (6b), the more accurate coefficients have been

found as follows [1]:

cr+br

2 —ar:(d4n—r+d4n+r)+ """ N

Cr—br
2
On the other hand, substituting 27 into # in (6b), we find that

Cr’:ar+<a4n~r+a4n+r)+ """ s

Con—r' =Qzn-r+aznsrtaen—r-t-oo .

— Qzn-r=Aagn+r+A6n-r—+-0r -

These trapezoidal coefficients {c,'} determine a truncated Chebyshev series of degree 2n.

Therefore, we have simple relations between {b-}, {c-} and {c;/} such that

cr'=(cr+b:)2 (7 a)
Con—r' =(cr—0br)2, r=0,1, - ,n—1 (7bh)
cn' =cal2. @)

These relations play an important role in this paper.

2. Evaluation of the coefficients by midpoint rule

Taking z:' = cos (k/2n)m, series (4b) can be rewritten in the form
(n/Z)br:kgl Tr(z! s-1) f(x 26-1).

Neglecting the detailed description [2], we now consider to evaluate the midpoint coefficients
{6-}. Let n be an even number. We define
Fu= f(@' )+ f(—22-1), Far= f(2 1)~ f(— 2" 2-1),
F*y=Fop-+Froopss, Fru2=Fou—Fn_strs,

F*4k—1Ex’2k-1sz—1+x/n—2k+1Fn—2k+1, F*4k—35x’zk—1F2k—1 —x,n—2k+1Fn—2k+1
and

br=(br-1-+br+1)[2, 7: even (8)
Then, the following relations are obtained.

(n)2)br = Tr(zy ) Fa* 4= Tr(s' ) Fg¥ 4o + Tr(znrz-1)Fa*,

r=0,4,8----- n—4 (9)
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(n/Z)br = Tr(xll)Fz* =+ Tr(xs’)Fe* b eRLREE + Tr(x/n/z—l)Fn—z*,

r=2,6,10, ----n—2 _ 10
(n)2)br="Tr(z\ )\ F5*+Tr(xs' ) F ¥4 +Tr(znsz—1 ) Far¥,

r=0,4,8, - ,n—A4 11D
(n)2)br = Tr(z\)F1*+ Tr(zs' ) Fs*+ - + Tz nsa-1)Fa-s*,

r=2,6,10, - n—2. 12)

These four series with 7/4 terms can be evaluated by a recurrence formula. If &, and
br are obtained for 7=0,2, 4, -+ , n—2, the coefficients b, b, -+---- , bu-1 are easily determined

by the following formula

br+1:25r—br—l, r=2,4, - ,n—2
bi=b. (13)
As we stated above, all the coefficients &, »=0,1, - ,n—1 are obtained with »?%/4

multiplications approximately, when 7 is multiple of 4. By slight modification, however, all
the midpoint coefficients may be obtained for even number n with the same number of

operations.

3. Successive approximation for functions

We now assume that nth degree truncated Chebyshev series has been determined for
given function f(x) by the use of trapezoidal rule. Using this nth degree polynomial, we
show a method to construct 2nth degree polynomial (both polynomials are truncated Chebyshev
series with trapezoidal coefficients). Since interpolating points of these polynomials are dis-
tributed symmetrically on the range —1<z<{1 in respect of origin, we concern only on the
points on [0, 1].

Let us rewrite the notations as follows. Let xz=cos(k/n)T be the interpolating point of
nth degree polynomial with the trapezoidal coefficients {c;}. Similarly, let xi' =cos (k/2n)w
be the interpolating point of 2nth degree polynomial with the trapezoidal coefficients {ci'}.

Then, we have

ka/:xk, k:o’ 1, ...... , ﬂ/2,
2/ =V (1+x))2, 14)
Zor' 1= (zn’ +x2r-2")(2x1"), £=2,3, -+ , n/2.

Given {z¢'} and f(zs-'), n—1th interpolating polynomial is constructed by midpoint
rule as stated in paragraph 2. Thus, midpoint coefficients {6,} are obtained. Combining
{6,} and {c,} by formula (7), coefficients {c/'}, r=0,1, -+ ,2n are easily evaluated. Re-
peating these operations by substituting 27 to 7, {cr'} to {¢,} and {22’} to {x+}, we construct
a sequence of interpolating polynomials whose degrees are the power of 2. Setting n=2,
starting values necessary for successive approximation are given as follows:

zo=1, x1=1, (15a)

and

1 -1
co=5 f(D)+F(O)+5 (1),
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a=pfl) =5 f(=D), (15b)
ca= 5 F )= O+ A (D).

If the given function f(z) is sufficiently smooth on [—1, 1], we can determine the

stopping rule
[cn-1]+leal <€ (16)

for preassigned accuracy €.

To construct a polynomial sequence mentioned above taking the degree n=2% 2% --- - ,
27 successively, we require the following operations. Denoting N=2", we need N?/12 mul-
tiplications approximately. Numbers of calculations of square root and of evaluations of the

function are loga N—1 and N1, respectively.

4. Conclution

We can refine the Clenshow-Curtis method [3], and reduce the number of operations as
stated above.

We conjecture that the number of multiplication to calculate the midpoint coefficients
for the degree 2¢—1 may be more reduced without increasing the complexity of the algorithm,

stated in paragraph 2.
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