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On Kutta-Merson Process and its Allied Processes

MasaTsucU TANAKA*

1. Preface

In this paper, we’ll describe some trials to give Runge-Kutta methods the ability of error
estimation taking up as our object only single-stage method. R. Merson, F. Ceschino and
R. E. Scraton have already made researches of the same kind, the one by the last author
being too complicated though. (See [1], [2] and [8].) Those by the first two will be ex-
plained in this paper. The difference that lies between the methods by these pioneers and
those proposed by us is this: the former consumes the freedom of conditional equations for
the purpose of simplifying the procedure, while the latter uses the same freedom to highten
the accuracy both of estimated value of truncation error and of the formula to search for
the numerical solution. (Henceforth on account of space consideration the following abbrevia-

tions will be used; t. e. for truncation error, ac. for accuracy and e. v. for estimated value.)

2. Preparation

We let the given differential equation be

L (2, 9), o) =00 @1
Then we set a Runge-Kutta formula using five functional values as follows :
i—1
kiZ}lf(xo+aih, yo-l— Zlﬁijki> (Z:]., 2, 3, 4, 5, a1=[81020) (2 2)
J:
5
N1=Yyo+ gluikz‘, (2.3)

where a;, Bi; and v; are constants, h is the pitch of the integration and y: is the approxi-
mate solution at x=zo+A.
If y(x) is the true solution of (2.1),
n—y(zo+h)=[arhf+ah®Df+h¥ asD?f +as fyD f)+h4b6. D f
+b2 fyD*f b3 D f+buD f Dfy)+h¥(cr D' f
+coD fDfy+esDPffy+caD? f Dfy+esDff
+co(D f)2fyyt+erfyDf Dfy+csDffy®) 4o 1 (2.4)

where D:%+f°?j% and also where a;, &;, i=1,2,3,4 and ¢j, j=1, 2, -, 8 are the func-

tions of coefficients to characterize the formula. (Concerning to the details of these fuctions,
see the original paper [4].) o at the end of the parentheses shows that the functions in them
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are estimated at the point (o, 7). The other ¢’s in later expressions have the same

meaning.

3. The measurement of ac. of t. e.

To acquire ac. of third and fourth order Runge-kutta formulae, we use three kinds of
measures with almost the same property.

If formula (2. 3) is a third order method, its t. e. E is obtained in (2. 4) when ;=0 and

i=1,2,3,4. The following measures are used to know ac. of t. e. of the formula (2. 3).

Ay=8|b1]+ | b2| + | 262404 | + | ba+b4s| +2| b3 | +2| 4| (8.1)
4
Bi=3 5] 3.2)
4
Ci=202 (3.3)
i=1

As=16]c1|+4]|ca|+|c2+3cs| +|2c2+3cs| + | catcs| + | s
+8|ca|+ |es] +|2cs+cr| + | cstcetcr| + | o] 4 | 2c6+c7]

“Her| +2]es] , (3. 4)
Bszé|c,~| (3.5)
cs=§c,«z (3.6)

=1

A;, B; and C; are the criteria of ac. of t.e., the first used by A. Ralston and the last two
by T.E. Hull and R. L. Johnston. (see [5], [6].) These measures reflect rather precisely ac.
of t. e. of the formula. For the later convenience sake the above quantities concerning to

the typical Runge-Kutta formulae are given in Table 1.

Table 1. Ac. of t. e. of the typical Runge-Kutta formulae.

Method Order| i Ay | B; Cs
Classical Runge-Kutta method 4 5 | 1.01x107! | 2.67%x1072 | 1.41x10*
Runge-Kutta-Gill method 4 5 | 8.41x1072 | 2.24% 1072 | 1.06x1074

Ralston’s method with the highest ac. of t.e. 4 5 | 5.46x1072% 1.67x1072 | 8.76x107%

Heun’s method 3 4 | 2.831X1071 | 7.41Xx107% | 2.14%x10°8

Kutta’s method 3 4 | 2.50x107t | 8.33%x107% | 3.47X1073

Ralston’s method with the highest ac. of t.e. 3 4 | 1.11x107t | 4.51%x1072 | 1.75x10"3

4. Kutta-Merson Process and Ceschino’s Method

Concerning to Kutta-Merson Process, we use the same symbols and so on with those in
the original paper. (see [1]) Now we set T:—El_)—(y4~y5). As is shown in the original paper,

ys is a fourth order method and 7 is so made as to give e.v. of t.e. of ys when f(z, y)

is a liner expression of x,y. However, Merson insists that when the pitch A is small
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enough, T can give a good e.v. of t.e. even if f(x, y) is a non-linear function of z, v.
Concerning to Ceschino’s method, we use the same symbols and so on with those in the
original paper. (See the case of rank 5 pp. 227-229 in [2].) Now we set T =yir1—yir1.*
In his method yi+1, yir1* and T are a third order formula, a fourth order formula and e.
v. of t.e. of y;+1, respectively.
The measured quantities of ac. of t.e. concerning to the two methods above mentioned

are given in Table 2.

Table 2. Ac. of Kutta-Merson process and Ceschino’s method.

Criterion|

\ integral
. formula

method ™~

Ay B Cy As Bs Cs

vs  (2.73%10719) (7. 16 10-11) (2. 10 x 10~2%)] 4.65% 102 | 1.18%10-2 | 2,09 10-5
Kutta- | 7] 4.81x1072 | 1.01x10~% | 4.20x10~5 | 1.33x 1071 | 2.04x 1072 | 9.59% 10~

M
przzzzz ys+ T | 4.81x1072 | 1.01x10-2 | 4.20%10-5 | 1.13x10°! | 2.06x 102 | 7.94% 10~
ve | 2.41x1071 | 5.09%1072 | 1.05%x107% | 5.92x10-! | 9.47x10- | 1.65% 10-3
, g | 8.51x107 | 7.69%10-2 | 3.38%10-% | 6.92%10-* | 1.10% 10 | 3.10% 10~
Ceschino

yier®  [(7.55x1078) [(2.27x107%) [(1.68x10716)| 2.89%x 1072 | 6.17X 1073 | 6.54x 108

The values in round parentheses are 0 by nature, though they ceased to be because of the
computations done in finite digits. :

Through the close observation of Table 1 and 2, we can see many facts, one of which is,
for instance, as follows. If f(x, y) is a non-linear function of z and y, the estimated error T in
Kutta-Merson Process is e. v. of t.e. of ys-+ T with the ac. of third order, but not of ys which
has a fourth order ac. In other word, Kutta-Merson process is a method in which t.e. of
ys which is the sum of all the error terms with degrees larger than 5 concerning to 4, is replaced
by the t.e. term of degrees four concerning to 4 which are in another integral formula with
ac. of third order. Here T has no logical relation to t.e. of y5. However, T will generally
give too large value for t.e. of ys in those problems of good sort, and where the t.e. term
of order A* in the formula to search for the numerical solution is excessively large compared
with that of order A%, and accordingly the convergence of Taylor’s expansion of the solution
goes rapidly. When the assumption above is satisfied, Ceschino’s Method becomes effective,
too. These facts will be affirmed when the quantities representing ac. of t. e. of order A° in
the formula to search for the numerical solution are compared with those in the formula
which seeks for t.e. of the formula firstly mentioned.

By Ceschino’s method, we get the ac. of the integral formula y;+1 which is not so good
as a third order one, but the ac. of the formula y;+1*, which is for the error estimation, is
comparatively desirable as a fourth order one, so that e. v. brought out as the difference
between y;+1 and y:;+1% is correct to a considerable degree. On the other hand, Kutta-Merson
Process is inferior in its ac. of e.v. of t.e. to that by Ceschino when ys;+ 7 is used as a

formula to obtain numerical solutions. It is clear in the Table, too.
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Table 3 shows the true error and e.v. of t. e. when a differential equation gg:%, y(1)

=2Jis integrated one step using Kutta-Merson Process and Ceschino’s Method. E. V. of t.
e. in Kutta-Merson Process is excessively large because of the assumption of non-linearity,

while that in Ceschino’s method is very correct.

Table 3. The Error of the numerical solution when %:%, y(1)=2 is intergrated
from £=0.0 to x=0.1 by the pitch of 0.1.
method actual error estimated error
Kutta-Merson Process 72%107° 2089 10~°
Ceschino’s method 15125x10~° 15099 % 10-°
5. Similar Methods
5.1. Methods using three functional values
The general form of the formula is
i—1
ki=hf(xo+aih,yg+21ﬁfjkj> (221,2, 3, CL’1=,81():0) (5 1. 1)
i=
3
y1:y0+421/liki (5.1.2)
=
3

where «;, 8:;, (; and v; are constants, y: is an integral formula and 7T stands for e.v. of t. e.
of y1. The conditions for T to express t.e. of y1 and those by which ; is made a second
order method are solved using o2 and o5 as parameters. (Details are in[4].) Two examples

are given below.

(1) The cass where ay= 1

o =1
2 (¢4 0

Formula I: 0(2:621’:—%—, a3=1.0, B31=—'1. 0, ,832:2. 0, ﬂ1=0.0,

>

ldzzl‘ O. D= —'é—

S S
2= Y= s

(2) The case where ax=1, 013:—%

Formula II: ay=p.1=1.0, 0(32'—;—, 6312%, '332:_3‘? ,Lt1=/lz=%

H

1):1):i uz—g—
1=Vs 3 3 3"

5.2. The methods using four functional values

The general formula is
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i-1
ki=hf(xot+aih, yot+ }_,‘lﬁ,»jk,-) (1=1,2,3,4, ai=pB1p=0) (5.2.1)
J:
3
.711:2/0—}-.2,1 ik (5.2.2)
4
Y2=y0+ Elviki (5. 2. 3)
\T=y1~yps, (5.2.4)

where «a;, Bij, t; and v; are constants, 1 and y» are respectively an integral formula and a
formula with higher ac., which is necessary for error estimation, and 7T stands for e.v. of
t.e. concerning to 71. The two systems of conditional equations for ¢; and y» to be respecti-
vely a third and a fourth order method have not any solutions. However, it is possible to
obtain as good an approximate solution as we desire.

Taking off the two conditional equations

3
Dzazzﬂsz—l*m(gzaizﬂu):% (5.2.5)
and
3 1
7—’3(126(35324-1)4(22@{,345)“4=‘8‘ (5.2.6)

from the system of y», we solve the rest and the system of 1 using @, as and @, as
parameters. (Details are in[4].) If the solution is substituted for (5.2.5) and (5. 2. 6) both
of these two become

3—40(2:}_

=7 (5.2.7)

Accordingly, when a» converges to 0, the equations (5.2.5) and (5.2.6) are satisfied. If
s is set small enough when we choose free parameters s, @3 and @4, we can make y; and

y2 formulae each with ac. of a third order method and with that of almost a fourth order

one. For instance, if we set az=—1~, 053=L and ays=1 we can get the following Formula

60 2
IIL.
Formula IIT: agrﬁm:glo-, 0(3:%’ 531:_577%, ﬂ32:2399Q, ay=1.0,
1918321 _ %4225, 117 _ 300
Pu="gss08 » Pe="Tqar> Pe=%gr =10 te=—%g,
/,L :—3—9 D=, :_]; )] :E
3 2’ 1=Vy 6’ 3 3

Next, we try to optimize the coefficients from the standpoint of t.e. so as to higher ac.
of error estimation. In this case, we use the criteria of ac. of t.e. explained in 3.

Henceforth, A;;, B;;j and C;; stand for the criteria of the t.e. at jth degrees concerning
to h in the integral formula y;(¢=1, 2).

It is rather a hard requirement for a third order formula y: to have the ability of error

estimation through four computations of function. So we’ll try to minimize the t.e. terms
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of order A%, and %° in y; giving attention not to make the t.e. term of order A% in
excessively small. One of the formulae obtained thus will be given below.

Formula IV:  @a=f2=0.001, as=0.7, Bs=—244.3175262, [;;,=245.0175262,
@i=0.8, Bu=136.1510201, Bip=—136.0025668, Bs3=0.6515466956,
1= —23.52380952, u:=23. 84358607, us;=0.6802234484,
vy = ~—538. 31547619, v,=>53. 71521268, v;=0. 3392601675,
v,=0. 2610033375,

where
Ay=3.05%X107Y, Byy=9.44%x1072 C14=38.54%x107% By =6.25%x10"8,
Aps=T.52x1072 By;=2.70x1072, Cap=1.69%x10"4
Table 4 shows the following things: firstly the numerical solution 7;, which was attained
when the ordinary difierential equation
was integrated using Formula IV from z=0 to x=0.1 by the pitch of 0.1, secondly its
true error €, and thirdly 7 which is e.v. of t.e., and lastly the ratio of T to e.

Table 4. The numerical solution at =0.1 in ig:jy—, 2(0)==1.
dzxz 14z
y1(numerical solution) g(actual error) ' T(e.v. of t.e) T/e
1.6093414971 —0.0011685030 ’ —0.0010419490 0.892

5.3. The methods using five functional values

The general form of the formula is

i-1 ‘
k,-=hf(:co+a,-h, Yo+ Zlﬂ,'jkj) (i=1, 2, 3, 4, 5, 0[1=ﬂ1020> (5. 3. l)
J:
5
y1=yo+4§2 iz (5.3.2)
5
yzzyo—l-.;l Uiki (5. 3. 3)
Te11—1n, (5.3.4)

where a;, Bij, #: and v; are constants, y; and y» are each an integral formula and a formula
with higher ac., which is necessary for error estimation, and T stands for e.v. of t.e. in 7.
The condition for ¥z to be a fifth order method is that ai, &; i=1,2,8,4 and ¢;, j=1,2,
------ ,8 in (2.4), where 3, is replaced by g2, become all 0. As the impossibility of such a
condition has been already proved [7], we take out of the above conditional equations
ar=b;i=0 (i=1,2,3,4)
and also
ci=0 (i=1,2,5)

and then solve them together with conditional equations for g to be a third order method
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using @3, @3, ¢4 and @5 as parameters. (See the details in [4].)
The search of coefficients has been made in the following way.
(1) We decide all of the lattice points of four dimensions which are gained when each of
oz, Qs, o4 and a5 in the set of parameters are moved at a fixed interval within a certain
region.
(2) By dint of the solution, we compute all the coefficients of y» and Ass, Bss and Cas for
each of the above sets of parameters, oz, @s, &4 and s, in which case, for these coeffieints,
y2 naturally becomes a fourth order mechod with rather high ac.
(3) Out of the innumerable sets of parameters in (1), we take up the set of parameters
which makes Az, Bzs and Cas sufficiently small and consequently lets 72 be endowed with
ac. nearly of the fifth order.
(4) For each set of parameters contained in the group of coefficients obtained in (3), we
compute all the coefficients in 7; and A;;, By; and Ci;{j=4,5). In this case, y1 is of course
a third order method.
(5)  Out of groups of coefficients gained in (4), we choose firstly the group where Ais, Bis
and C;5 are not so small, and then out of this group, the following three coefficients are
chosen.
(a) A type whose A, Bis and Cyy are small enough.
(b) A type whose Ais, Bis and Cy4 are considerably small.
(c) A type whose Ais, Bis and Cys are small.
The following Formula V, VI and VII correspond respectively with (a), (b) and (c)
above stated. 4
Formula V:  az=pf21=0.0031, as=0.402, B3 =—25.66412331, B3»=26.06612331,
ay=1. 0005, Bg=2321.3722438, Bi=—324.1161348, Bi3=3. 7443910486,
as=1.0, fs=319.9266520, Bsy=—322. 6578129, Ps3=3. 730663566,
Bsa=0. 0004973349184, w»=0.1276529869, us=0.5774104702,
Hy= —54. 90255223, ps=>55.19748877, v = —0.001106906558,
v, =0. 1289088032, v3=0. 5770159269, vs= —55. 08439267,
v5 =55, 37957484.
Formula VI: ag=fa=—0.0025, as=0.3985, B3 =32. 15974180, Bs,= —31. 76124180,
a4=1.0005, Bu=—402.9114034, B =400. 1456441, f43=23. 766259273,
as=1.0, Bs1=—401.1095721, Bs2=398. 3565430, Bs3=3. 752531702,
Bs4=0. 0004973503641, u»=0.1216605083, 3=0.5834052188,
te=—54, 23420321, wus=54.52913749, v, = —0.009699144572,
v, =0. 1323963467, v;=0. 5803923412, vy,= —55. 73162758,
vs=56. 02853803.
Formula VII: ap=ps=—0.0023, a;=0.401, B3 =35.35729065, Bs;= —34. 95629065,
ay=1. 0005, B4=—439. 0806052, B,;2=436.3303196, Bs3=3. 750785679,
as=1.0, Bs1=—437.1081827, Bs:=434. 3706279, [s3=3. 737057439,
Bse=0. 0004973393258, 15=0. 09505105246, 15=0. 6628977358,
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te=~15,30917274, us=15.55122395, v, =0. 2068670840,
Dy = —0. 08053328809, v;=0.5779923511, v,= —55. 26802466,
5 =55, 56369851.

Table 5 shows ac.’s of Formula V, Formula VI and Formula VII which have been
measured using the criteria stated before. Formula V has high ac. of the integral formula,
but is inferior in the ability of error estimation, while Formula VII has good ability of error
estimation but its ac. of the integral formula is inferior. Formula VI, being the medium of

the above two, seems to be fairly desirable.

Table 5. The ac. of t. e. of Formula V, VI and VIIL

method | i |  Au Bu Cus As | Bs Cis
1 |6.67x107* | 1.99x 1074 | 1.41x107% | 1.76x1073 | 3.35x 107 | 2.81X 108
Formula V
2 e — o 9.76x1078 | 3.25%x 1078 | 5.28x10"16
1 15.58%107% | 1.65%x1073 | 9.65%x10-7 | 1.45% 1072 | 2.76x107% | 1.88x10-¢
Formula VI
2 _ R — 7.76x1078 | 2.58x 1078 | 3.34x 10716
1 | 1.48x107% | 4.41%107% | 6.94Xx10™* | 3.89x 107! | 1.37x 10"t | 7.39X 102
Formula VII
2 _ —_— 7.14x1078 | 2.38x 1078 | 2.83% 10716
We'll give an example showing Table 6 in which the case when the ordinary differen-
. . dy 1
tial t = g2 y(2)=1
1al equation dr Sx?/, %(2)

is integrated from 2=2.0 to x=2.1 by the pitch of A=0.1 is displayed. The second line
of the table presents numerical solution yi, the third line presents the true error, and the
last, e.v. of t.e. The columns from the second to the sixth give the results obtained each
by Formula V, VI, VII, Kutta-Merson Process and Ceschino’s method.

Table 6. The Numerical solution at x=2.1 in %z—-—éxzyz, y(2)=1.
z

method Formula V | Formula VI | Formula VII ’vKutta-Merson Ceschino
21(numerical solution)| 0.87710757 0. 87710823 0.87712818 j 0. 87710774 0. 87711650
(true error)x 108 8 74 2069 25 901
(error estimate)x 108 10 77 2075 217 860

5. Conclusion

Our methods are basically different from that of Cheschino and from Kutta-Merson
Process in this point: while the latter two consume the degrees of freedom of conditional
equations, in order to take away the procedure of making the integral formula, the former
makes use of the same degrees of it for the improvement of ac. of the integral formula

and also of the ability of error estimation.
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Our methods will increase the utility as a system of functions grows more complicated,
and the procedure of making the integral formula has smaller and smaller ratio to the
amount of all the computations. The formulae we gave here are not necessarily the best one.
Especially the formula proposed in 4 has still room for examination. However, the method
we used, being effective, seems to be capable of obtaining fairly good formulae. Though we
were forced to omit many of the important items here as space was limited, more details

will be found in the Japanese issue of the same paper.
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