A Method of Multi-dimensional Linear Interpolation

Masao Iri*

1. Introduction

Let G be the set of lattice points in the n-dimensional Euclidean space \mathbb{R}^n , i. e. those points $\mathbf{x}=(x_1,\ldots,x_n)$ whose coordinates x_i are integers. Furthermore, we shall denote by \overline{G}_0 the union of those unit hypercubes each of which has its 2^n vertices in G_0 (which is a subset of G), and by (S_0, S_1, \ldots) a partition of \overline{G}_0 into n-dimensional simplexes S_i 's each of which is contained in one of these unit hypercubes in \overline{G}_0 with its n+1 vertices belonging to G_0 . The problem is to extend a given real-valued function G0 defined on G0 to a function G1 defined on G2, i. e. to obtain an G2 defined on G3 such that

$$f(\mathbf{y}) = g(\mathbf{y})$$
 for every $\mathbf{y} \in \mathbf{G}_0$. (1.1)

This process of extension may be called the interpolation of g by f. We shall confine ourselves to such an interpolation that f(x) is continuous and that f(x) is piecewise linear, i.e. linear in each of the S_i 's.

The above specifications determine an f in the one-dimensional case but are not sufficient

This paper first appeared in English in Joho Shori (the Journal of the Information Processing Society of Japan), Vol. 8, No. 4 (1967), pp. 211~215.

^{*} Department of Mathematical Engineering and Instrumentation Physics, Faculty of Engineering, University of Tokyo, Japan.

to fix an f in the multi-dimensional case, as is exemplified in Fig. 1 by the two different partitions of a (three-dimensional) cube into (respectively, five and six) simplexes.

Among many possible interpolation methods (in the above sense), a computationally simple and efficient one will be presented in § 2 and its accuracy of approximation will be discussed in § 3.

2. A Method of Multi-dimensional Piecewise Linear Interpolation

It suffices to consider the case where \overline{G}_0 is a unit hypercube:

$$C = \{x = (x_1, ..., x_n) | 0 \le x_i \le 1 (i = 1, ..., n)\},$$
(2.1)

 G_0 being its 2^n vertices. We partition the C into n! simplexes $S_1, S_2, ..., S_n!$, where S_j 's are put in a one-to-one correspondence with the permutations $(i_1, ..., i_n)$'s of (1, ..., n) and $S_i(i_1, ..., i_n)$ is defined by

$$S_{(i_1,...,i_n)} = \{ x = (x_1, ..., x_n) \mid 0 \le x_{i_1} \le x_{i_2} \le ... \le x_{i_n} \le 1 \}.$$
 (2. 2)

If we denote by e_i the unit vector whose i-th component is 1 and all the other components are 0 and put

$$\mathbf{d}_{0}^{(i_{1},...,i_{n})} \equiv \mathbf{d}_{0} = (1, 1, ..., 1),
\mathbf{d}_{r}^{(i_{1},...,i_{n})} = \sum_{s=r+1}^{n} \mathbf{e}_{i_{s}} \qquad (r=1, ..., n-1),
\mathbf{d}_{n}^{(i_{1},...,i_{n})} = (0, 0, ..., 0),
i_{n+1} \equiv n+1, \quad i_{0} \equiv 0, \quad x_{n+1} \equiv 1, \quad x_{0} \equiv 0,$$
(2. 3)

then a point

$$\mathbf{x} = (x_1, ..., x_n) = \sum_{i=1}^{n} x_i \mathbf{e}_i \qquad \epsilon \mathbf{S}_{(i_1, ..., i_n)}$$
(2. 4)

is expressed as a weighted mean of vertices $d_r(i_1,...,i_n)$'s:

$$\mathbf{x} = \sum_{r=0}^{n} (x_{i+1} - x_{ir}) \mathbf{d}_{r}^{(i_{1}, \dots, i_{n})}, \tag{2.5}$$

where it is noted that

$$\begin{array}{ccc}
x_{i_{r+1}} - x_{i_r} \ge 0 & (r = 0, ..., n), \\
\sum_{n=0}^{n} (x_{i_{r+1}} - x_{i_n}) = x_{n+1} - x_0 = 1.
\end{array}$$
(2. 6)

From (2.5) we directly have the interpolation formula:

$$f(\mathbf{x}) = \sum_{r=0}^{n} (x_{i_{r+1}} - x_{i_r}) g(\mathbf{d}_r^{(i_1, \dots, i_n)})$$
when $\mathbf{x} \in \mathbf{S}_{(i_1, \dots, i_n)}$. (2.7)

3. Accuracy of Approximation

Let us suppose that the given function g (on G_0) is the restriction to G_0 of a function (to be denoted by the same symbol g) defined on some domain including \overline{G}_0 . (We shall assume that the g has the continuous second derivatives.) Then, the discrepancy:

$$\varepsilon(\mathbf{x}) = f(\mathbf{x}) - g(\mathbf{x}) \tag{3.1}$$

between the original function g and the interpolating function f may be estimated as follows. Without loss in generality we may assume that

$$0 \equiv x_0 < x_1 \le x_2 \le \dots \le x_n \le x_{n+1} = 1 \tag{3.2}$$

since the case where $0=x_1=...=x_m$ can be reduced to the problem of lower dimension by deleting $x_1, ..., x_m$, as is evident from (2.2) and (2.5).

To begin with, we rewrite (2.5) in the recurrence form:

$$\mathbf{y}_{0} = \mathbf{y}_{1} = \mathbf{d}_{0}, \ \mathbf{y}_{k+1} = \frac{x_{k}}{x_{k+1}} \mathbf{y}_{k} + \left(1 - \frac{x_{k}}{x_{k+1}}\right) \mathbf{d}_{k}^{(1, \dots, n)},$$

$$\mathbf{x} = \mathbf{y}_{n+1},$$
(3. 3)

where

$$\boldsymbol{y}_{k+1} = \sum_{r=0}^{k} (x_{r+1} - x_r) \boldsymbol{d}_r^{(1, \dots, n)} / x_{k+1} \quad (k = 0, \dots, n).$$
(3.4)

Here we note that

$$0 \leq x_k / x_{k+1} \leq 1. \tag{3.5}$$

Putting

$$\varepsilon_k \equiv \varepsilon(\boldsymbol{y}_k) \quad (\varepsilon_0 = \varepsilon_1 = 0, \ \varepsilon_{n+1} = \varepsilon(\boldsymbol{x}))$$
 (3. 6)

and

$$l_{k}^{2} = |\boldsymbol{d}_{k}^{(1,\dots,n)} - \boldsymbol{y}_{k}|^{2} \equiv \sum_{i=1}^{k} \left(\frac{x_{i}}{x_{k}}\right)^{2},$$

$$p_{k}(l_{k}\xi) = g(\xi \boldsymbol{y}_{k} \mid (1 - \xi)\boldsymbol{d}_{k}^{(1,\dots,n)}),$$
(3.7)

we have

$$\varepsilon_{k+1} = \frac{x_k}{x_{k+1}} \varepsilon_k + \frac{l_k^2}{2} \frac{x_k}{x_{k+1}} \left(1 - \frac{x_k}{x_{k+1}} \right) p_k''(l_k \xi_k)$$
(3.8)

by the help of Rolle's theorem, where $k \ge 1$ and ξ_k is in (0, 1).

(3.8) is further rewritten as

$$|\varepsilon_{k+1}| \leq \frac{x_k}{x_{k+1}} |\varepsilon_k| + \frac{1}{2} M \frac{x_k}{x_{k+1}} \left(1 - \frac{x_k}{x_{k+1}} \right) \sum_{i=1}^k \left(\frac{x_i}{x_k} \right)^2$$

$$= \frac{x_k}{x_{k+1}} \left[|\varepsilon_k| + \frac{M}{2} \left(1 - \frac{x_k}{x_{k+1}} \right) \sum_{i=1}^k \left(\frac{x_i}{x_k} \right)^2 \right], \tag{3.9}$$

where

$$M = \max_{\substack{\boldsymbol{u} \\ \boldsymbol{x} \in \overline{G}_{0}}} \frac{1}{|\boldsymbol{u}|^{2}} \left| \sum_{i,j} u_{i} u_{j} \frac{\partial^{2} g(\boldsymbol{x})}{\partial x_{i} \partial x_{j}} \right|, \\ |\boldsymbol{u}|^{2} = \sum_{i=1}^{n} u_{i}^{2}.$$

$$(3.10)$$

From (3.9) we have

$$|\varepsilon_{k+1}| \le \frac{M}{2} \sum_{j=1}^{k} \frac{x_j}{x_{k+1}} \left(1 - \frac{x_j}{x_{k+1}}\right)$$
 (3.11)

and, in particular,

$$|f(\mathbf{x}) - g(\mathbf{x})| = |\varepsilon(\mathbf{x})|$$

$$= |\varepsilon_{n+1}| \leq \frac{M}{2} \sum_{i=1}^{n} x_i (1 - x_i) \leq \frac{n}{8} M.$$
(3. 12)

It should be noted that we cannot in general make the error estimate more strict. In fact, the function

$$g(\mathbf{x}) = \frac{1}{2} \sum_{i=1}^{n} x_i^2 \tag{3.13}$$

and the point

$$x_1 = \dots = x_n = \frac{1}{2} \tag{3.14}$$

yield

$$\varepsilon(\mathbf{x}) = \frac{n}{8}M \qquad (M=1). \tag{3.15}$$