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A Method of Multi-dimensional Linear Interpolation

Masao Irr*

1. Introduction

Let G be the set of lattice points in the #-dimensional Euclidean space R?, i. e. those
points x=(z1, ..., Z») whose coordinates x; are integers. Furthermore, we shall denote by
G the union of those unit hypercubes each of which has its 2” vertices in Gy (which is a
subset of @), and by (8o, Si, ...) a partition of G, into n-dimensional simplexes Si’s each
of which is contained in one of these unit hypercubes in Gp with its n+1 vertices belong-
ing to Go. The problem is to extend a given real-valued function ¢ defined on Go to a
function f defined on G, i.e. to obtain an f defined on Gy such that

F@)=9) for every y<Go. (1.1)

This process of extension may be called the interpolation of g by f. We shall confine
ourselves to such an interpolation that f(x) is continuous and that f(x) is piecewise linear,
i.e. linear in each of the S/’s.

The above specifications determine an f in the one-dimensional case but are not sufficient

Fig. 1.
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to fix an f in the multi-dimensional case, as is exemplified in Fig. 1 by the two different
partitions of a (three-dimensional) cube into (respectively, five and six) simplexes.

Among many possible interpolation methods (in the above sense), a computationally
simple and efficient one will be presented in §2 and its accuracy of approximation will be
discussed in § 3.

2. A Method of Multi-dimensional Piecewise Linear Interpolation
It suffices to consider the case where G is a unit hypercube :

C={x=(z1, ..., 2,)|0L2;Z1(i =1, ..., n)}, 2.1
G being its 2" vertices. We partition the C into n! simplexes Si, S, vooy Su1, where S7s
are put in a one-to-one correspondence with the permutations (74, ..., in)s of (1, ..., n) and
S, ...,in is defined by

Sty .in=1{x=(21, .., ) |02, L 25, < ... L 25, <1} (2.2)
If we denote by e; the unit vector whose i-th component is 1 and all the other components
are () and put

dyinin=dy=(1,1, ..., 1),

d i in) = 2" e;, (r=1, .., n-1), L

s=r+1 (2 3)
d, i =(0, 0, ..., 0), J
in+1E7Z+1, ioEO, .7:7,4.151, onO,
then a point
x=(z1, ..., Zn)=\x:€; €S, ..., in) (2. 4)
i=1
is expressed as a weighted mean of vertices d (it - in)’s :
X= Z(xi-i—l_xir)dr(i"""i”), (2. 5)
=0
where it is noted that
Zipy—2i, 20 (r=0, ..., n), 1
n 2.6
2Ly~ ZTin) = Znr1—20=1. (2.6)
n=0
From (2.5) we directly have the interpolation formula :
| x)=3 Ziyiy— iy )Gl lits oerin)
| =2 Jo(d- ) @7

when xeS, ... ). i

3. Accuracy of Approximation

Let us suppose that the given function g (on @) is the restriction to Gy of a function
(to be denoted by the same symbol ¢) defined on some domain including Go. (We shall
assume that the g has the continyous second derivatives.) Then, the discrepancy :

e(x)= f(x)—g(x) ' (3.1
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between the original function ¢ and the interpolating function f may be estimated as follows.
Without loss in generality we may assume that

=0 <212 225 . S xn S Xnr1=1 (8.2)
since the case where 0=z1=...=xn can be reduced to the problem of lower dimension by
deleting zy, ..., Zm, as is evident from (2.2) and (2.5).

To begin with, we rewrite (2.5) in the recurrence form:

Yo=yi1=do, Yr+1= f’iyk-}- (1 H“*{Ci)dk(l’ )
Zr+l Zr+1

8.3)
X=¥Yn+1,
where
E
Yr+1= go(l‘r+1_xr)dr(l""’n)/xlz+1 (k=0, ..., n). (3.4
Here we note that
Oéxk/xk+1§l. (3. 5)
Putting
SkE8(yk) (9():51:0, €n+1:8<x>> (3 6)
and
k 2
L= |dyd ™ — gy, 2= (ﬁt) ,
i3 |z ykl z§1 Z . 7
P €)=yt (1= E)dp (1 om),
we have
_x g P [ e
8k+1—xk+18k+ 5 xk+1(1 ey )P}; (1x&w) (3. 8)
by the help of Rolle’s theorem, where k=1and & is in (0, 1).
(3.8) is further rewritten as
B[, \2
lek+l|§i"—lskl+iM ~ (1‘ xk)Z(&)
27 xrn1 Zp+i/i=1
Tk k X 2
[I el -+ ( )2( ):\ (3.9)
xk+l xk+l =1\Z¢
where
M= max 6 *g(x) W
Iu 0x;|
6o (3.10)
lu)2= Sus. J
i=1
From (3.9) we have
) ) .
|sk+11s1‘242 i’—(l——ﬁ> (3.11)
Fi=1Zk+1 $k+1

and, in particular,

| £ (x)—g(x)| = le(x)]
= lewn| <Y B 21— 2)Z M. (3.12)
i=1 8
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It should be noted that we cannot in general make the error estimate more strict. In

fact, the function
1 ”n
gx)="5 3 (3.13)

and the point
x1=~--:xn=—%~ (3.14)
yield

s(x):%M (M=1). (3.15)



