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Introduction

It may be really challanging to imagine a computer which analyzes problems and gener-
ates programs by itself to solve them.

In this paper, we describe a certain self-programming system by which a computer
gradually becomes clever using his past experiences, by the statistical learning procedure of
Bush-Mosteller type?’, with aids of Man and finally he grows up to be able to solve some
problems which he has never learned yet.

Approaches which have been tried toward our fascinating goal, ranges from the heuristic
one® to the deterministic one®’ (i. e. automatic selection of suitable procedures).

Even in the heuristic approach, the computer is supposed to have been given highly
organized power in advance. Incidentally, it must be more fascinating to imagine a general
system i. e. self-programming system which educates a computer to acquire such power and
bring up the computer to a programmer of any object computer.

In order to realize such a purpose, we prepared two computers: one is a programmer
in embryo (called B-computer) and the other is a hypothetical computer (called H-computer)
on which B-computer generates a program to solve a problem.

Table 1. The language of the H-computer in our Experiments.

Instruction { Function

CAD = ‘. (n)— Acc
CSB = { —(n)— Acc
ADD = (Acc)+(n) > Acc
SUB = (Acc)—(n)— Acc
MUL = (Ace)x(n)— Acc
DIV = (Acc)+(n)— Acc
STR = (Acc) > n

(Special)
LINK = links to the program starting from address n
MACR 7 excute the macro instruction »
HALT halts the program

Note. Acc: Accumulator
(Acc), (n): the contents of Acc and address 7 respectively

This paper first appeared in Japanese in Joho Shori (the Journal of the Information Processing
Society of Japan), Vol. 8, No. 3 (1967), pp. 121-130.
* The authors of the above paper were T. Ishida, H. Yasui, H. Sugiyama and K. Joh, Faculty
of Engineering, Osaka University. Presently, T. Ishida is at the Kamakura Works, Mitsubishi
Electric Corp. K. Joh is professor of mathematics at the Faculty of Engineering, Kansai University.



2 T. ISHIDA, H. YASUI, H. SUGIYAMA & K. JOH

Both computers may be chosen arbitrarily. As a special system, suppose they are the
same, then the B-computer will finally aquire an artificial intelligence which enables to answer
the solution of a given problem.

The basic assumption underlying our self-programming system is that our B-computer
does not know the meaning of the language of the H-computer at the beginning.

Then, in order to make our experiments easier, we restricted our problems to those
which can be handled by the B-computer. The problems are composed of the arithmetic
operations such as addition, subtraction, multiplication and division. The language of the

H-computer is shown in Table 1.

1. Structure of the Self-programming System

When Man shows a Problem to the B-computer, Interpreter tries to solve it, refering
to Memory, that is, to create a program, written by the language of the H-.computer, the
execution of which may offer the answer of the Problem.

Then, if the Problem is solved, Interpreter shows the Answer. If it cannot be solved,
Interpreter informs Trainer, Analyzer, and the Learning Body of the knowledge about
the Problem and requests Man to supply Advice for solving the Problem. k

After Trainer received Advice from Man, Generator generates one program in ac-
cordance with the status of Learning Body. Then the Trainer evaluates this program
on the basis of the Advice and trains the Learning Body.

These processes of program generation, evaluation, and training are iterated until the
Generator construct successfully a correct program, then the Analyzer compares the matters
just learned with the contents of Memory and then registers the comparison into the Memory.

Accumulating such learning on various Problems, our B-computer becomes clever. In
the following sections, the components of the system will be described in detail.

1.1. Problem
Problem should be expressed in the following syntax

(Problem) ::={term)
{term) ::=<{unary operatory({operand))|
' {binary operatory({operand), {operand))
{operand) ::=<{atom)|{term)
{unary operatory ::=<identifier)
{binary operatory ::=<identifler)
{atom) ::={identifier)
{identifier) ::={letter) | {identifier) {letter)|
{identifier) {(digit)
{etterd ::=A|B|C|D|E|F|GIHI|I|J|K|LIM|N|O|
P|QIRIS|T|U|V|WI|X|Y|Z
(digity ::=0]1{2|3]4]|5|6[7[8]9

1.2. Memory
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One element of Memory is composed of the pattern field and the definition field. The
syntax of the pattern field is the same with that of Problem with the replacement of
{operand) ::=<atom)|{term) by {operand) ::=ATOM|TERM
where ATOM and TERM are pseudo operands. The definition field consists of a sequence
of operand designators for TERM pseudo operands or pairs of operation codes and operand
designators for ATOM pseudo oprands.

1.3. Interpreter

Interpreter first creates a subproblem by replacing all {atom) operands in Problem
with ATOM pseudo operands. Comparing this subproblem with each element in Memory,
it tries to find an element which is equal or matches with the subproblem in the pattern
field ({term) operand matches with a TERM pseudo operand).

(1) When there is a matching element (and there is no equal element), Interpreter
sets up another subproblems next to be solved by extracting {term) operands corresponding
to the TERM pseudo operands from the subproblem.

(2) When there is an equal element, the solution of the subproblem can be obtained
from the definition field of the element.

(8) 1If there is no equal or matching element, the effort of solving the subproblem is
continued no more.

Thus, the Interpreter forms a tree of subproblems connected by AND or OR relation
until the time he obtains the solution.

If he fails to solve the Problem, he informs the Man, of the Main Program of the
Problem and also of the subproblem which makes the Problem unsolvable. When the
subproblem itself consists of a tree of subproblems, the {term) oprands in the subproblem
corresponding to solvably composed subproblems are replaced by TERM pseudo operands.
The subproblem after this modification is called an Unknown Problem. The solution pro-
grams of the composing subproblems are sent to Learning Body as the macro states
generated by Interpreter. Finally Interpreter requests Advice.

1.4. Advice

Advice should bo composed of necessary and sufficient information to define the Problem.
Naturally, it is meaningless if the B-computer at the time cannot understand this information.
At the infant learning stage, we may supose that the B-computer is able to understand only
numerical information. Hence, Trainer first insert certain numerical information into some
specially prepared locations which correspond to {atom) operands in the Problem one by
one and wait for the Advice.

There are two kinds of Advice: Goal and Subgoal. The latter is given to speed up
learning and not always necessary. Goal is the the information which shows the status (the
contents of those location) after the execution of solution program of the Problem. Subgoal
is composed of partial information of Goal.

1.5. Learning Body

«

In the sequel, taking each operation code of the H-computer as a “state” (operation
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code state) and using the macro states generated by Interpreter, we are able to regard the
learning process of a program as that of a transition sequence of states which corresponds

to the program. Hence, Learning Body consists of two matrices and two vectors as follows.
(1) State transition matrix (STM)

an diaccccc ain by m
az Azttt azn b2 di= 2 aij
Jj=1
aii>0
Anl  An2°ctt ann  ba

Where 7 is the number of states. The transition probability with which the process
moves from state S; to state .S, is expressed by

pii=aij/b:.
(2) Initial state finding vector (ISFV)

(d01, apz, "ttt 5 Aon, bo)

n
bo= >3 aoi, aoi>0
i=1

(1=1,2, - 7
where, the probalility that the initial state (from which the process starts) is S; is
Poi = aoi/bo.

(3) Final state finding vector (FSFV)
(ars, @z, =+, ans, by)
bfzéajf, a;5>0
(j=1,2, e ) _
where the probalility that the final state (at which the process ends) is S; is
pir=ajrlbys.

(4) Operation code address corresponding matrix (OACM)

Ci1r Cyzeee Cim di m
Car  Ca2ee°r Com  dr di= 2 Cij
Jj=1
cij>0
Ciz Cyareeees Cim di

(i=1,2, - L F=T,2, e ,m)
where [ is the total number of operation codes, and 7 is the total number of data locations,
and the probability that the address ADj; is corresponding to the operation code state S; is
expressed as
gii=cij/di.

1.6. Generator

Suppose there are z branching ways from a certain branch point and the probability to
select i-th way is p:, then we can select the z-th way in proportion to P:, by generating

a random number 7(0<r<1) and determinant satisfying the following relationship,
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¢
S pi<r< X pi, po=0 (1

where t=1,2, - , 7.
Based upon such a procedure, Generator generates a program of H-computer (Generated
Program) as follows. Firstly, we determine an initial state and a final state from ISFV
and FSFV, and then we obtain a sequence of state trasitions by STM, starting from the
initial state, ending at the final state. Then, each time an operation code state is selected,
the address corresponding to the state is determined by OACM.
1.7. Trainer

Trainer executes the Main Program for the first time. Since is the Main Program
there is contained at least one link instruction tc the Generated Program, the Generated
Program is excecuted. Then, Trainer decides one out of the following three cases, that
is, the Goal has been attained (called Success), some Subgoals has been attained (called
Subsuccess), and none of them has bee attained (called Failure). For all transitions in the
Generated Program the transition probabilities are increased in case of the Success or the
Subsuccess and decreased in case of the Failure. The details of reinforcing procedure will
be mentioned in Section 2. Trainer usually switches his work to the Gemerator after
finishing the education of the Learning Body, except the occasion where all the following
three conditions are satisfied simultaneously. When the condition are met, the Trainer
judges the learning has been completed and switches his work to the Analyzer.

(1) The Generated Program has been judged as successful.

(2) The product of transition probabilities of all the state transitions in the Generated
Program, and the probabilities of selecting the initial state and the final state is sufficiently
close to one.

(38) The product of corresponding probabilities of all the operation code state and the
address correspondences in the Generated Program is sufficiently close to one.

1.8. Analyzer

Analyzer reaches the element M; in Memory whose pattern field differs from the
Unknown Problem (UP) only in one {term) operand. If there is such element M;, he
can extract one common element and two different elements as follows. The pattern field
of the common element is that of UP or M; whose different {term) operand is replaced by
TERM pseudo operand. Then, the definition field of the element is the common part. of
the definition fields of UP and M;. The pattern fields of the two different elements are
the different {(term) operands themselves, and the definition field of each different element

is the difference between the definition field of UP or M; and that of the common element.

2. Learning procedure
In this section we will explain in detail the learning procedure of each component in
the Learning Body. As the learning procedures of STM and OACM are almost similar

and the learning procedure of ISFV and FSFV are also almost similar, we will mention the
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learning procedure of STM and ISFV only. In the following description we denote the
length by L and the state transition sequence of a Generated Program by
Si o> Sy o> veees - Sy
2.1. Learning procedure of STM
When a Generated Program has been judged as Success (or Subsuccess), learning of
the following type is performed.
Qtitig = Atitintbtivks

bt,’ _)bti+bti'k5 (2>

where ks is a positive constant, which will be discussed later. Thus the transition proba-
bilities will be changed as

Ptiting = Apeiti (1 —a)

Drij = Qpij (3)
(i=1,2, e JL—1 j=1,2, - R N)
where
1
— 4
YT ks (4)

Thus, a linear operator has been operated. Though there are various operators for changing
probabilities, the linear operator seems to be the most useful one for our experiment because
they promise effective learning and the analysis concerned is easy. In a matrix form, we
employ the following BOSH-MOSTELLER’s stochastic learning model® for our linear operator.
T=al+(1—a)A (%)

where, @ is a positive number, I is the # X7 identity matrix and A is the following nXn

matrix.
AL Ageeeees A
A= Pt
A Apeeeoes An

0<e<l 3 Ap=1.
k=1

When we apply T to the probability vector P, we obtain
TP =aP-+(1—a)i, (6)
where A=(A1Ap---+ An).
Then, each component of P, is changed as follows.

pi = apit+(l—a)d: (7)
(i=1,2, - ,n)
After we apply T to P N times repeatedly, we obtain
TVP =P +(1—a")A. (8)

Thus we know TVP tends to 2 if 0<a<1 as N becomes large, i.e. the i-th component
of TVP tends to 4.
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In case of (3), A; equals to one. When a Generated Program has been judged as
Failure, the learning of the following type is performed.
Qtitiyg = Atitin—btiks

bt,- e bt,-—bt;kf (9)

where 0<kr<1. But, if asiti—0:i2,<0, asitiy, and be; are left unchanged.
Thus the transition probability which is larger than %2, will be changed as follows.
Dritin > Bphtitin+(1—0)
brij = Bprij (10
(i=1,2, - ,L—1 j=1,2,---- , M Lie), ’

where

1
11—k,

The criterion that a Generated Program is judged as Swuccess (Subsuccess) will be equiva-

B=

lent to the fact that the state transition sequence corresponding the Generated Program
contains the state transition sequence Sj: which begins with state S; and ends with state .S,
passing through an ordered state sequence (the probability of which is denoted by pis).
The convergence of % can be proved if the effect of failure punishment is negligibly small
(the proof is shown in [4]). In other words 7j: tends to unity after a large number of
the program generating trials.

In the previous discussion we presumed ks is a constant. However, it will be better to
make the value of £s depend on the length L of a Generated Program judged as Success
(Subsuccess), because, if we assume the minimum length of the solution program to be L,
Ln—1/L—1 transitions of all, the L transitions satisfy the following relationship, i.e.
Ln—1

l_a:kS/L—l’ where 0<ks'<1. D
Since L is usually unknown, the minimum value 2 may be used. Then, obtain
o ks ks
kS_L-—l—-ks' a=1 I-1 12)

Smaller value of ks’ may be desirable from the learning speed point of view, but the
smaller ks’ the more redundant program will be experienced. Such situations were confirmed

in the experiments shown in Table 2.
Table 2. The learning results of MINUS (TERM).

ks a N1 8N az\/i Swi-np| T=L871 | 5=L1 &
20i=1 20i=1 20i=1 20i=1
0.8 0.8 965 189 2. 2min. 9/20
0.4 - 0.9 1037 188 2.4 5/20
0.2 0.95 1192 180 2.7 0/20
0.1 0. 675 1401 155 2.9 0/20

Note N:: number of program generation trials required complete learning with the i-th experiment
T;: time required to complete learning with the i-th experiment
E:; number of useless states included in the learned program with the i-th experiment
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2.2. Learning procedure of ISFV
Only when a Success (or Subsuccess) Program whose length is equal to or smaller
than the minimum length of the post Success programs have been generated, ISFV performs

the learning as follows.

i=1
aot, > 1, aor; = I (1— pritj,,)
Jj=1

L i-1 (13
bo=>1+ 2 I (1= prjes,).
i=2j=1
Thus the probability to select Si; as an initial state is changed as follows.
Doti= por(1— pri_:) :Pozll,{[l (1 ~ttj0)
7=t (14)

L i-1
plezl 1+2 II (lﬁptjfiﬂ)'

i=1j=1

Since the essential part of the state transition sequence of Success (Subsuccess) Program
is Sji, the problem is to search for the true S; among S:’s. By such a learning procedure,
the probability of taking Sy as S; becomes smaller, as the transition probability of Sz, —Ss
grows larger. We can prove the convergence of this learning procedure (the proof is shown
in [4]). That is, the initial state will be uniquely determined finally.
2.3. Conclusion of the learning procedure

The probability with which Generator generates a Success (Subsuccess) program is
given by

psve=(poj+ Ek Poihifm)ﬁjk—Pkf+sl§gjk(!’0j+ Ez Poi*hijP)piw b Py,

where (as to the following notation refer to [5]).

hij® : the probability that the generating process, starting from state S;, will ever reach
state .S; without passing state S.

bij:  the probability that the generating process, starting from state .S;, goes to state
S; for the first time.
Hy=(7:;%)=(Nys—I)N 124,
Bi=(bi;)=N;-R;
Ni=(I-Qu!

Q::  (n—1)x(n—1) matrix deleting the £th row and the 2th column from P.

Nisg: diagonal matrix having the diagonal elements of Nj. _

R;: #n—1 component columh vector which is made by deleting jth component from

the jth column vector of P.

I: unit matrix.

From the convergence of pj; and the learning of ISFV and FSFV, it will be obvious
that psuc tends to unity after sufficiently many trials. Further, by considering the conver-
gence of OACM we reach the following conclusion concerning our learning procedure.

By our learning procedure, the solution program will be certainly learned in the long

run. The program obtained by such learning will not be always the best one, that is, the
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~

MPROG
CAD N
ADD KILM
STR. WORKI
CSB HI
SUB H2
gﬁK ggg‘lég Responce from the computer to the Problem-
STR WORK3 P2.
ggg gggg The compute‘r expresses the status of the un-
ADD 1J , known function DIV and requests the advices
SUB WORK :
SR ANSWER required.
HALT
UNKNOWIN
DIV(ABCD,EFG)
DIV( ATOM,ATOM)
ADVICE J

Give the Problem-P 3 to learn the unknown
MOVE(DIV(A,B),C
(D1v(4,8),C) funtion DIV (ATOM, ATOM),

MPROG b
LINK GPROG
STR (o}
HALT

UNKNOWN L Responce for the Problem-P 3.
Div(A,B)

DIV( ATQM,ATOM)

AWVICE Give the advice to solve the Problem~P 3 with
7 numerical informttions: SET (A=2.449048,

B=1.414) GO =1,
SET( A#5 12449048 ,B#511414) ) GOAL (C=1.732
GOAL(C#51 1732, A#512449048. 8451 1414) and A=2.449048 and B=
¥

14)
LEARNED Learning for the Problem~P 3 has been
MPROG completed in about 24 seconds.
: %%%méﬁnﬁg(mgimus(DIV(ABCD,EFG)),sua(mmus(ﬁl),H2)),IJ),

g%g i}\I{IM A Give the Problem~-P 2 once more.

STR WCIDRKI MPROG

CSB H cAD N

SUB H2 ADD KM

STR WORK2 g;g I;][(i)}}}(l The correct program was printed as a solution

[C;g],; Eggﬂ 2}1% %R}Q ¢ of the Problem-P2 in about 2.5 seconds.

STR WORKS gAD ABCD

G wmg MR

SUB WOR CSB WORK3

ADD 1J f\[n]% WORK2

SUB  WORKI I

SUB WORK !

STR ANSWER  S51n  musvEr

HALT HALT y
Note. WORK 7 (¢=1,2,3) Note. GPROG denotes Generated Program
denotes working area address. Fig. 2. An example of process of gaining the solution of
Fig. 1. Massage for Prob- - Problem-P 2.

lem-pl (solution).
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length of the program may not be the minimum among the possible solution programs.
However, when we choose the parameters of the learning procesure properly it will be

possible to obtain the best program at a sacrifice of the learning speed.

3. Examples of the experiment
First we educated the B-computer to master 5 functions, MOVE, ADD, SUB, MINUS
and PLUS, spending about 65 minutes by NEAC-2206, in which both the printing time
and the manual operation time are included. After that we showed the Problem-P1,
MOVE(SUB(ADD(SUB(MINUS(ADD(ABCD, PLUS(EFG))),
SUBMINUS(H1), H2)), 1), ADD(KLM, N)), ANSWER),
then the B-computer printed out a program (solution) shown in Fig. 1 after about 1.5
seconds. However when we showed the Problem-P2 which included unknown function DIV,
MOVE(SUB(ADD(SUB(MINUS(DIV(ABCD, EFG)), SUB(MINUS(H1),
(H2)), 1J), ADD(KLM, N)), ANSWER)
then the B-computer at once printed a message shown in Fig. 2 and halted requesting
Advice. In Fig. 2 shows a sequence of messages printed out or typed in, by the time

the solution program of the Problem-P2 was obtained.

4. Conclusion

The system reported in this paper may be viewed as a compiler generating system in
a sense, that is, in this system the B-computer learns the semantics of the syntax of Problem
expressed in the language of the H-computer and grows up to a kind of a syntax directed
compiler®. In order to extend our system more powerful, inclusion of a time dependent
learning procedure, will bo necessary, because, we can determine the state sequence uniquely
by considering the time. Further, there are many problems still remained such as extending
the Problems themselves and making the Advice of higher level. For the purpose of
realizing an artificial intelligence, the language of the H-computer itself will be the object
of further research. Anyway, we believe our self-programming system is a very meaningful

one from our experiences, as an example of the artificial intelligence.
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