Information Processing in Japan Vol. 9, 1969

Compiler Describing Language : COL
Hirosnr HAGIWARA* AND KATUMASA WATANABE*

It is required to construct compilers easily and effectively on some machine,
and many efforts have been made for it. As one method for it, we have con-
stituted the compiler describing language COL which is suitable to write the
compiling processes. The compiler, which is described in the forms of the
SYNTAX TABLE and M-routines, divides the source program into some Incre-
mental Units (IU) which are able to be compiled independently of other parts
of the program, constructs M-structure denoting the syntactic structure of IU
and generates three-address pseudo codes depending on several informations in
the M-structure.

1. Constitution of a Compiler .

A compiler described in COL translates the source program represented in
Problem Oriented Language (POL) into the object program through the parsing
phase and the translating phase (Fig. 1). On parsing phase, the compiler,

Compiler 1 PARSING P
{ described | PROCESSOR Source
in COL o
"] A wear P
SYNTAX
TABLE | PARSING
PHASE
COL PROCESSOR
COMPILE | |<R=T)
OPERATION
H R T
- |TRANSLATING <r‘—;¥" TRANSLATING
" | PROCESSOR *. PHASE
MEANING Pseudo <;;odes
an.
MP ROUTINE Oonstanj; table
Machine
language

Fig. 1. COL System and Compiling process.

(1) reads the source program and recognizes an input symbol or a string
of symbols,
(2) clarifies the context of the source program and constructs the M-structure

This paper first appeared in Joho Shori (the Journal of the Information Processing Society
of Japan), Vol. 9, No. 4 (1968), pp. 187-196.
* Faculty of Engineering, Kyoto University.

COMPILER DESCRIBING LANGUAGE : COL 97

denoting the syntactic structure,

(3) enters into the translating phase after the completion of the syntax
analysis.

The part of the source program, the structure of whose context is determined
completely and which is able to be translated into the object program by itself,
is called an Incremental Unit (IU). For example, as to ALGOL 60, one statement
and/or one declaration can be an IU. The parsing phase is paused at the end
of the parsing of an IU, and the translating phase is begun with the M-structure
of the IU.

M-structure denotes the result of the syntax analysis of an IU and consists
of the inner representation of the basic items (identifier, number or string) and
M-routine name. The M-structure of an (expression) is represented in the form
of reverse-polish.

On translating phase the compiler reads M-structure (normally, from left to
right) and executes the M-routines whose names are specified in the M-struc-
ture (these names are denoted MNAMEs). In M-routines it is specified to allocate
the storage, to manipulate the identifiers, to store and restore the necessary items,
and to construct a part of object program.

M-routines, whose MNAMEs are given in the M-structure, are executed one
after another. Execution of all the M-routines in the M-structure of an IU means-
the completion of the transformation of the IU into the object program. Then,
compiler returns to the parsing phase and restarts the syntax analysis of the
next IU.

A compiler is made up of a SYNTAX TABLE and a set of M-routines. The
former gives the parsing algorithm and the latter translating procedure. These
are transformed into the executable form in a machine by a COL processor for
the machine.

2. SYNTAX TABLE

Depending on the syntactic definition of POL, the SYNTAX TABLE is formed
with READ & TEST OPERATION and ACTION OPERATION (Fig. 2). Fach
line of the SYNTAX TABLE is executed as follows :

0 1 2 3

LABEL READ & TEST OPERATION T. ACTION F. ACTION

Fig. 2. Format of SYNTAX TABLE.

If TEST then T. ACTION else F. ACTION ; ,
where TEST denotes the result of TEST OPERATION and has the value true or
false. Compiler has three push-down storages to carry out the parsing. FEach

of them is the structure
(head)——(tail)

98 H. HAGIWARA & K. WATANABE

and information is reserved in tail, in first-in-last-out manner, through read.
Heads are called IP, OP, STP.
IP: points the position of the input symbol which is examined.
OP: points the position of the right most item in the M-structure.
STP: points the position of the OPERATION being performed.
Pushodown storage E is manipulated by the following operation :
RESERVE (E): pushdown tail E; head E—tail E;
RESTORE (E): head E<tail E; pop up tail E;
LOSE (E) : pop up tail E; head E is unchanged.
(1) READ OPERATION
* : takes one symbol in the source program which is designated by IP and puts
it into INPUT register. But, if the inner switch RF is “on”, only resetting of
RF to “off” is done and any new symbol is not taken from the source program.
(2) TEST OPERATION
I: examines whether an identifier is found at the next position of the source
program.
N: examines whether a number is found at the next position of the source
grogram.
“delimiter” : examines whether the specified delimiter is found at the next posi-
' tion of the source program.
CALL (SNAME) : recognizes whether the next unit of the source program is the
specified syntactic unit SNAME
i. e,, RESERVE (IP, OP, STP); STP :=SNAME ;
When these TEST OPERATION is satisfied, the inner variable TEST is given
the value true. Otherwise TEST is given the value false.
(3) ACTION OPERATION
[MNAME]: specifies a MNAME to be inserted in the M-structure
OP :=0P+1; (OP) :=MNAME ;
a: requires that the inner representation 7s of a basic item x is inserted in
the M-structure
OP :=0P+1; (OP) :=n2;
/ : instructs to stop the parsing phase and to begin on the translating phase
with the M-structure constructed till then. After the M-structure has been
translated into object program, the parsing phase is restarted at the position
designated by STP.
—>SNAME : transfers the parsing procedure to the line labelled with the speci-
fied SNAME.
STP :=SNAME ;
—T. A: transfers the parsing procedure to the T. ACTION of the same line.
This OPERATION is permitted only in F. ACTION.

COMPILER DESCRIBING LANGUAGE : COL 99

ON: sets the inner switch RF to “on”
TR: gives the answer “true” for the OPERATION CALL (SNAME) and returns
to the calling point
TEST :=true ; LOSE (IP, OP); RESTORE (STP);
FR: gives the answer “false” for the OPERATION CALL (SNAME) and returns
to the calling point
TEST :={false ; RESTORE (IP, OP, STP);
ER: calls the error processing routine. After specified error processing, the
parsing procedure is continued from the calling point.
¢: means empty OPERATION. Next line is executed.
STP : =STP+1;
Example 1.
The SYNTAX TABLE of the POL which has the following syntactic defini-

tion is given in Table 1.

Table 1. SYNTAX TABLE of Example 1.

AS | I [1] a FR
x e [Left] ER,-T.A
CALL (EXP) [Right]/TR | ER,[Z],~T.A

" EXP | CACC (P) FR

E1 | xeg” ON, TR
CALL (P) [Plus],~El | ER,[Z]—T.A

P I [1] a, TR A
xe FR
CALL (EXP) ER.
Ky TR ER, [Z],—T.A

asst) = (iden) < {exp)

{expy =<prim) *[+(prim)]

{prim) =<iden) | (<exp))
The parsing of a statement, for example,

xe—at(b-+c)+d (1)
is started from the first line, and the M-structure

[1] ne [Left] [1] ne [I] ne [1] nc

[Plus] [Plus] [I] ns [Plus] [Right] (2)

is constructed.

3. M-routines
On translating phase, compiler has following registers and auxiliary storages

100 H. HAGIWARA & K. WATANABE

to read M-structure, to execute M-routines and to construct object program.
There, @ and ¢ is the number of bits to represent the storage address and the
type specification of an identifier, respectively.

(1) pointer H(a), R(a), T(a): H, R, T point the cell of the M-structure. R
points the cell containing the MNAME to be executed next. H and T point at
first the left-most and the right-most cell of the M-structure respectively, these
are used to know the detail of the M-structure and to write new information
in the M-structure. '

(2) pushdown MP(a): MP corresponds to STP and points the Semantic
Statement being executed.

(3) pushdown j(a), m(e): j designates the next available position in which
the object code is placed and m is used for the storage allocation.

(4) other working registers :

W=Wl(a), W2(z), W3(a)

Q=01(1), Q2(a—1)

b(a), c(a)

CODE .
where CODE is the register to manipulate the string of symbols for the opera-
tion part of an object code.

(5) stack f: stack f has the format fl(a), f2(z), f3(a) and is used for the
identification of identifiers. The form of each element of stack f is

[inner representation its allocated]

of an identifier 7., type, location
The identification is performed depending on the block structure of the source
program with the following STACK OPERATIONS.
FIND : Beginning with the first element of the zail f, searches the same identi-
fier as given in fl.

If such element £ is found Q1:=0, Q2:=k;

otherwise Q1l:=1, Q2:=0.

SEARCH (¢) : Beginning with the i-th element of the tail f, searches the same
identifier as given in f1 in the part of zail f corresponding to the current block
of the source program.

If such element % is found Q1:=0, Q2:=k;

otherwise Ql:=1, Q2:=0.
DELETE (i) : deletes the i-th element of zail f and pops up its following elements.

Based on the semantic definition of the source language, M-routines are
described procedurally in the sequence of the following Semantic Statement.

(1) ASSIGNMENT STATEMENT

left :=right ;
(2) CONDITIONAL STATEMENT
(EQUAL CONDITION) STATEMENT ;

COMPILER DESCRIBING LANGUAGE : COL 101

When the specified condition in {) is satisfied, the following statement is
executed.

(3) TRANSFER STATEMENT
a. go to MNAME ;

MP :=MNAME.
b. [MNAME]; treats the specfied MNAME as a subroutine entry
i. e, RESERVE (MP); MP :=MNAME.
¢. | ; denotes the end of a M-routine or subroutine.
(4) POINTER STATEMENT
(+1); (=1
The contents of the specified pointer II is increased or decreased by unit value.
(5) ERROR ROUTINE CALL STATEMENT ER.;
This calls the pre-determined error processing routine.

(6) LINK STATEMENT LINK (o, L) ;

a denotes the position of the object code whose address part is undefined.
LINK («, L) puts the contents of the register L in the address part of the code
a. When the address part of @ has the value 8, this operation is performed
for the code B until the value 8 is zero.

(1) PUSHDOWN OPERATION and STACK OPERATION

(8) OBJECT CODE STATEMENT

[OP part, address part];
This specifies the object code to be generated.

In these Semantic Statements suitable to répresent the operation of the
translating phase, compiler is described strictly and compactly.
Example 2.

M-routines of the POL given in Example 1 is described as Table 2. Accord-
ing to these routines, the M-structure (2) of the statement (1) is translated into
the following sequence of object codes.

ADD m2, m3, t6;
ADD ml, 6, 6;
ADD 6, m4, t6;
STO 16, mb5;
where m1 to m5 mean the allocated location of a, b, ¢, d, x and ¢6 is the

temporary storage location.

102 H. HAGIWARA & K. WATANABE

Table 2. - M-routines of Example 1.

I (+R); f1:=(R); FIND;
£:=F(Q2); (+H); (H):=f3/;

Left: (T):=[Agl; (+T);
(T):=(H); (+T);
(T):=[Right]/;

Right: /:
Ag: (+R); [‘STO" (H), (R)1; (+))/s
Plus: [Tm];
[‘ADD’ (H—1), (H), QI; (+i)
(—H); (H):=Q/;

Tm: Q:=H-1); <Q1=1}/;
Q:=(H); <Q1=1)/;
(+m); Q:=m; Ql:=1/;

Z: (+H); (H):=Cy**/;
** Cp represents the location of the con-
stant 0. 0.

4. Conclusion

We could describe compilers plainly in COL in the form of SYNTAX TABLE
and Semantic Statements, but, as to the reflection of the characteristics of each
computer on a compiler, we should have to leave it to each COL Processor.
Especially, since operation to read source program and to edit identifier or num-
ber depends largely on each computer, they must be written in machine language
or assembly language.

M-routines are executed with informations in several cells of the M-structure.
So it is expected to describe M-routines easily and compactly even for the com-
plicated POL. But, at the same time, we must take into consideration about the

relation between M-structure and M-routines.

