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The Basis of Sequential Estimation Process
from the Viewpoint of Information Theory

SUGURU ARIMOTO*

This paper attempts to establish a theoretic basis for sequential estimation
problems from the viewpoint of information theory. The problem which is
dealt with consists in that one has to make a decision which point of a set of
categories an observed sequence of random variables belongs to. It is supposed
that the distribution of the random variables depends on a point of the finite
set of categories. Much attentions are paid to constructing equivocation quan-
tities with respect to decision rules, which satisfy some axiomatically required
conditions of goodness measure. A necessary and sufficient condition for an
equivocation to be minimized by the Bayes decision rule is obtained when the
number of categories is larger than two. In the simplest case where only two
categories are possible the Bayes decision rule minimizes an infinite class of

equivocation quantities.

1. Definition of Decision Rules

Let X={z1, -, 24} be a set of categories and {Y:}, (¢=1,2,---), be a sequense
of random variables whose distribution depends on the point of X. It is as-
sumed that the sample space of the random variable Y, denoted by %, consists
of a fixed set of letters such that ;= {ai, -, am}. It is further assumed that for
every integer ¢ the distributions of the random variable Y*=(Y1, ---, Y,) are known
and given by p(y'/zs), (k=1,2,---,n), where ¢’ is a realization of Y? and denotes
a point of Y=Y, x - xY,.

Definition 1. Let © be the set of all vectors 0 such that 0=(0s, -+, 0,), 1>
0,>0, 330,=1, and @ be the closure of 6. A mapping that maps the sample
space Y* into @ is called a decision rule at time ¢ and is denoted by ¢*: Yt
O, or in a concrete form O=¢'(y*). The set of all decision rules at time # is
denoted by 0¢= {¢‘}.

Example. The Bayes decision rule is defined as follows:

L =2 00D P30 (1)

Here 0 is called a prior distribution.
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2. Generalized Equivocation

The problem which will be discussed in this section is how one can con-
struct a goodness or equivocation measure concerning such decision rules.
Reasonably a goodness measure of a given decision rule ¢’, which is considered
to be a random variable by definition, should be a certain expected value of
¢!, However, since the true value of Categories is not known, one can not
evaluate the true expected value of the decision rule ¢?. Therefore, as far as
one takes the Bayes viewpoint and attributes a prior probability distribution
0¢@ to the set of categories X, the only meaningful expectation of a random
variable in question should be taken with the joint distribution over X x 4*.
Thus, according to this Bayes viewpoint, we shall henceforth confine our con-
siderations to the following type of goodness measure.

Fpt: 5):>; % P [z)0nf (94 (")) (2)

Here the scalar function f(«) is assumed to be continuous and have a continu-
ous derivative on 0<a<1.

We can now describe some axiomatically required conditions that the quan-
tity (2) has to satisfy.

Definition 2. When the quantity (2) satisfies the following four conditions,
it is called a generalized equivocation with respect to the decision rule ¢’

(i) For any ¢’€?* and an arbitrarily fixed 6e@ F(¢’:0) is non-negative and
there exists at least one decision rule ¢*e¢®@* such that F(¢*: 6)>0.

(ii) If for any pair (j,4) such that j=4,

%VP(Z/‘/«’CJ')P(Z/’/%)ZO

then it follows that

inf F(t: 6)=0. : (3)
¢t

(iii) If for all 9%et, p(yt/xi)=---=p(y*/xa), then it follows that
inf F(¢*: 0)=F(0) (4)
(pt

where F(0) is independént of ¢+ and continuous on ©.
(iv) In general it holds that
inf Fe**t: 0)<inf F(¢*: 0)<F(0). (5)
§0t

ez

The requirement of (i) is clear. The “if” part of (ii) implies that the in-
tersection of the sets of 7’ such that p(y'/z;)>0 and p(y'/x:)>0 is void for any
pair (j,%) such that jax%k This means that the observation Y=y’ is sufficient
with probability one to decide which category the observed data belong to.
The form (3) is a version of this statement. On the other hand, when the
assumption of (iii) is satisfied there occurs no difference between categories,
that is, any observation of the random variable Y’ gives us no information to

make a decision. This circumstance may be reduced to that the infimum of
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equivocations remains equal to F(0) which is considered to be an equivocation
quantity with respect to the prior distribution 6. The inequality (5) is reason-
ably required since at least the infimum of equivocations should decrease with
increasing observed data.

3. Results
In this section a few reults concerning the generalized equivocation are
described.
Theorem 1. If a function f(a) in (2) satisfies the following two conditions,
then the quantity F(¢?: 0) has the properties (i)~(iv) of Definition 2.
(C1) inf f(a)=0.
- O0<a<kli
(C2) There exists at least a number such that
fla)>0 and 0<a<1,
Proof. The properties (i) and (ii) are almost clear. When the assumption
of (iii) is satisfied,
i;I,f Flet: (1)=§P(y‘/x1)i§1f EkZ- Orf (Ax)) Zi?f EkZ Orf (A2)].

Thus we put
F(U):ir}f % Orf(Ap). (6)

Clearly from this, F(0) is independent of ¢ and continuous on & because of the
continuity of f(a). In order to prove the inequality (5), we first show the
concavity of F(f). Let 6%, 6%0 and @ be an arbitrary constant such that 0<a<1.
Then it follows immediately from (6) that

aF(0)+(1- @) F(0)< inf 33 (a0 +(1~a)0) £ ()= Flad'+(1~a)f).  (7)

We shall now show only the left half part of the inequality (5) since the
remaining part is proven analogously. Let y**'=y’Xy! and put

W'Y, xe)= Pyt Xyt ) (Pt xe).
Then, using the notations

Lr=pW Y xw), r=3] P )05 Ox*=p(yt xa)0:/ 2 p(yt]25)0; (8)
J J
we obtain
k3
inf F(p!*: 0)=3) r-ir;f (Z 20 f(A))=r-q-Fla1/q, -, qa/q). (9)
@ttt yt+ 7

Here we use

qi=p07%, q= X q;.
J

On the other hand, it follows from the concavity of F(0) that
S1g-Flgi/g, -y anl<F(Xqy, -, %]%)IF(&*, oy On%).
zll yl 1

Substituting this inequality into (9), we obtain
inf Flpt*!: O)< 3 F(0)= 5 inf (3 20/ z0ef (W) =inf Flo* : 0).
pt+l vt yt P

Theorem 2. Suppose that f(a) satisfies (C1) and (C2) of Definition 2 and
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let >3, Then, a necessary and sufficient condition for a generalized equivoca-
tion F(¢?:0) to be minimized by the Bayes decision rule (1) is that f(a) should
have the form f(a)=-—cloga where ¢ is a positive constant.

Proof. The proof of the sufficiency follows immediately from noting the
inequality

—% 0k10g6k£*"§ leogﬂk (10)

where 6 and 2 are arbitrary vectors of 6. Hence we shall prove the necessity.
At first, note that

i;ltf F(p*: 9)=§ igf EkZ 2@ 200k f (Ae)] =§f~irxlf [% Or* f(4e)) (11)
where the notations » and 6* are the same as (8). Since 0* is equivalent to
the Bayes decision rule defined by (1), the expression (11) implies that in gen-
eral f(a) should satisfy ,

inf (510, () = 5266 (12)

in order that the equivocation F(¢?: ) is minimized by the Bayes decision rule.
Therefore, from the theorem of Lagrange’s multiplier rule for a nonlinear pro-
gramming problem, (12) yields

0uF'(00)—E=0 Ffor k=1, 2, - n (13)
where & is a constant multiplier and f’ is the derivative of f. Taking into
account the assumption that #>3, we have from (13)

af’(a)=const. for O<a<l,
This yields

flay=—cloga-+tcu.
Due to the conditions (Cl) and (C2) of Definition 2, ¢ becomes zero and ¢
should be positive. Thus the theorem has been proven.

On account of Theorem 2 it is very reasonable in case of 7>3 to consider

the quantity

J(p*: 9)“—‘1’2‘ %*P(y’/xk)ﬁklog e (Y’). (14)

It may be worth noting that the conventional equivocation quantity denoted
by H(X/%') in information theory is obtained by minimizing J(@*: 0) with respect
to ¢?, that is,
t
J

It is also very interesting to note that in the simplest case of n=2 the Bayes
decision rule minimizes an infinite class of equivocations. If the derivative of
the function f has the form

flla)=gla(l—a))a (15)

where ¢(f) is an arbitrary function, then f(a) satisfies (13) if n=2. Namely, as
far as considerations are confined only to the case where n=2 there is no positive

reason to adopt a quantity with the form (14) as a measure of goodness of
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decision rules. The case where f(a)=V(1—a)/a, which clearly satisfies (14), was
first examined by Rényi [1] without giving any implication to derive an upper
bound for his “missing information”. Here we remark that Rényi’s result relies
heavily on the fact that V@T)/(XZ—Ioga for 0<a<1, where the logarithm to
base ¢ is employed. In particular, as an illustration of applications of the above
inequality and the idea of generalized equivocations, the following inequality

is obtained.
H(X/|Y)=inf J(¢¢: 0) <inf I kzl f(y‘/xk)ﬁkV(l — @ity ) ert (v*)
ot ot yt E=1,

=2V, (1—0,) %Vp(y‘/rl)zb(y‘/xz)

where the last equality is derived from substituting the Bayes decision rule (1)
into ¢°.

Finally, we comment that a similar discussion is carried out for the case
where the sample space 9 is infinite and continuous, and useful inequalities
concerning the generalized equivocation and error probability of practicél deci-
sion making are obtained [2].
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