Information Processing in Japan) Vol. 10, 1970

A Conception of Operating System Construction

HipETOST TakAHAST* AND Hisao KaMEDA*

-

1. Introduction

Operating systems play an important role in any use of computers, say,
batch processing, real time or time-shared use. In general, however, operating
systems have so much sophisticated functions that constructing and maintaining
them requires a considerable amount of labor. In addition, their external speci-
fications also vary according to the actual environment, and this leads to addi-
tional complication. To cope with this complexity problem, a more systematic
approach is needed.

The crucial problem here lies not in the design techniques for individual
operating systems but rather in finding universal principles of operating systems.
Such principles should not bring about undue complication or inefficiency of
operating systems constructed on them. Any truly significant principle should
not drastically deviate from the traditional ones and should receive empirical
support.

The principle of the following generalized scheme of operating systems,
which is believed to be a solution to the above mentioned problem is related
to the existence of a general basic program upon which any kind of operating
system can be built. Modern operating systems are usually constructed around
a basic program called master control program (MCP), which handles all kind
of interrupts and peripheral device controls, and thus enable “multiprogram-
ming”. We will develop a generalized but simplified construction of operating
systems based thereupon. We constructed an experimental time-sharing system
(upon HITAC 5020) for testing these principles.

2. The analysis of existing concepts and principles
Interrupt handling: The interrupt can be regarded as a kind of transfer of

control between separate program modules. Another such example is the sub-

routine jump. In either of these transfers, the current contents of the program
counter, general registers, which in all represent the machine conditions at the
instant of the transfer and hence called “stateword”, are saved immediately
after the transfer occurs, and they are restored when the former program conti-
nues its execution as if no transfer had ever occurred in the midst of its com-

This paper first appeared in Japanese in Joho-Shori (the Journal of the Information Procssing
Society of Japan), Vol. 11, No. 1 (1970), pp. 20-31.
* Faculty of Science, the University of Tokyo.

54

A CONCEPTION OF OPERATING SYSTEM CONSTRUCTION 55

putation.

In spite of this similarity between interrupts and subroutine jumps, the
logical aspects of these two types of transfers are quite different. In subroutine
jumps, it is customary that control is returned to the calling module just after
the execution of the subroutine is over, and it is essential that the subroutine
has gone through its computation before the calling routine resumes control,
which results of necessity in a kind of nested arrangement. In the case of
interrupts, on the other hand, the interrupted routine does not need to wait
until the routine pertinent to the interrupt has done with its computation, but
can resume control at any time. The often used nested arrangement to store
the statewords of the interrupted routines into a “push-down-stack” is, there-
fore, irrelevant to interrupt handling, and it is more preferable to make the
system handle the stateword of each module separately. Thus, each module
will be treated as an independent entity by the MCP, and this independence
between the interrupted module and the interrupting routine can be described
clearly in terms of virtual machine, task [6], process [5], sequential process [1],
etc. At any rate, a more careful analysis of interrupts is needed for discerning
the principle of master control programs.

Logical connectivity in various transfers of control: Interrupts can be divided

into the following categories; external interrupts (caused by the interval timer,
peripheral devices, etc.), traps (caused by privileged instruction violation, memory
protection violation, etc.), and supervisor calls. The transfers in external inter-
rupts have no logical meaning, since they are not caused by the interrupted
routines. In the case of traps, the activity of the interrupted programs should
be suspended for the purpose of the inspection of errors, since the ‘interrupted’
program has brought the error. Thus, traps are more akin to subroutine jumps
than to external interrupts. Supervisor calls and subroutine jumps differ from
each other in that, in the former case, the routine issuing the request can often
run in parallel with the requested routine, whereas, in the latter case, the
routine issuing the request should wait until the pertinent service routine has
carried out the requested task.

Thus, transfers among modules can be ordered in the following way, accord-
ing to the degree of the logical connection (plus that of the necessity of syn-
chronization) among modules.

1. subroutine jumps. 2. traps.
3. supervisor calls. 4. external interrupts.

As external interrupts, traps and supervisor calls are handled by similar
hardware mechanisms, it seems natural to arrange things in such a way that
the MCP handle all of these three kinds of interrupts and to free individul
function modules from handling of these transfers. Thus, we can simplify the

56 . H. TAKAHASI & H. KAMEDA

whole structure of any operating system by committing interrupt logic to the
care of the MCP and releasing other parts of the operating system from hand-
ling of transfers of control which have little logical significance.

Interprocess control communication for external interrupts and supervisor calls:

While the transfer of control caused by an external interrupt implies nothing
logical, it is possible to regard it as a request from an external device to the

12

pertinent service routine. This request is interpreted by the MCP as a “wake-
up” signal which makes pertinent routine (process) ready for execution [5]
Similarly, a number of supervisor calls may be interpreted as “wake-up” signals
which make the requested service routine (process) or the pertinent I/O device
ready for execution. When a service routine has done with the requested work
and needs only to wait for other wake-up signals, the routine enters the
“blocked” state by issuing a speial supervisor call named “block” to the MCP.
Notice that “wake-up” and “block” are conceptually identical with POST and
WAIT calls of IBM OS/360 respectively [6]. In this fashion, external interrupts

and supervisor calls can be uniformly handled.

3. Our proposed scheme

Experiences with operating systems hitherto constructed seem to show that
the general basic program (MCP) should fill the following newly noticed re-
quirements ;

I. to supply facilities enough for man-computer communication,

IL. to permit easy modification and extension of system programs; i.e., to secure
the independence among mutually independent parts and to prevent mutual
interference among them,

III. to draw a gradual distinction in capability between system programs and
user programs in place of a merely dichotomous distinction, i.e., to handle
both in the unified fashion for the sake of simplicity and generality.

I. comes from the following; i) User programs often want to make use of
external interrupt facilities provided by the hardware. ii) They will also want
to put the trap operations by protection violation, etc. under their control and
to construct an online debugging program (like DDT) protected from the inter-
ferences by the programs being debugged. Thus, each user program wants to
be provided with its own monitor for handling these interrupts and traps.
Hence the layered monitor operation is desirable.

These requirements will be fulfilled with the following principles or schemes.
System hierarchy: In our scheme both system programs and user programs con-

sist of several processes (modules). Thus, the requirement III should be applied
to the relation among processes. The notion of graded organization or layered
monitor operation is expressed as follows. A process (say, Y) can supervise another
process (say, Z) while the process Y is supervised still other process (say, X). In this

A CONCEPTION OF OPERATING SYSTEM CONSTRUCTION 57

configration X has more capability than Y, and Y has more capability than Z.
Such an organization may be realized by the introduction of total ordering
among processes. That is equivalent to the introduction of the concept of
‘level” among programs. In this scheme, processes of the same level have equal
power. Any process can control the processes of lower levels. No process can
control the processes of higher levels. This concept of ‘level” seems to under-
lie the concept of protection ring of Multics [2]. However, for the purpose of
securing the independence among mutually independent processes, partial order-
ing of processes is more appropriate than total ordering. In addition, it should
be so arranged that the system processes which are more frequently modified
or improved than other processes in the system programs be given less capa-
bility so as to prevent errors in them from intermingling with the operation of
processes which are not completely debugged either (requirement II). To fulfill
all these requirements we will introduce the concept of tree-like system hierar-
chy, which is realized under the control of the MCP. FEach process of the
system hierarchy corresponds to one node of the tree (see Fig. 1). The capability
(especially, the controllable memory space) of a process in the tree includes the
capabilities of the inferior processes.
Trap handling: Traps cause transfers of control to the supervisor in usual
systems. In our system, traps in a process lead to waking-up of the process
immediately superior to it in the system hierarchy. Since a process and all the
processes inferior to it form a group which is led by the process, traps in it
should be regarded as errors in the whole group. So, for the purpose of inspec-
tion of the errors, the activity of the whole group should be frozen. As it
should be possible to continue the activity of the whole group after the inspec-
tion is done, the state [waked-up/blocked] of each process should be reserved
while the process is frozen. Thus, each process should have [frozen/unfrozen]
state distinction in addition to [waked-up/blocked]. The state [frozen/unfrozen]

should be stored recursively in a nested arrangement. Freezing and unfreez-

[a]
B/i | 2]
b

Fig. 1. An example of the tree-like system
hierarchies. Each box represents a module
(process). Alphabetical characters denote the
names of modules.

58 H. TAKAHASI & H. KAMEDA

ing may be added as new basic operations on processes in interprocess com-
munication, since they will be useful also for other purpose, say, debugging.
In Fig. 1, processes C, G, H and I will be frozen when a trap occurs in C
or when process A freezes C. If H and I are already frozen by C or by a trap
in process H, only C and G will be unfrozen, and H and I will still be in the
frozen state, at the time when A issues a request to unfreeze C, and so forth.
The ‘suspend’ and ‘release’ operations of Lampson [3] are similar to ‘freeze’
and ‘unfreeze’ respectively except that the former operate on a single process
and are not related to the tree-like system hierarcy.
System hierarchies and memory protection: As described above, a process can

control the memory space controllable to any processes inferior to it in the
system hierarchy, but not vice versa. In Fig. 2, the controllable space of A

A
B C
D £
ey
1] (D HEH 1
LB =T TTe Jomal ,
¥ A Hl

=+ Controllable area of each module
4 Unprotected area of each module

Fig. 2. The relation between the system hie-
rarchy and memory protection.

includes the controllable space of B and that of C, and that of C includes that
of D and that of E. However, it is desirable that A should be able to prevent
itself from interfering with the space controllable to B or C accidentally and
erroneously. Processes do not always need to keep the unprotected space as
wide as the controllable space. Therefore, it is preferable to keep the unpro-
tected space as small as possible and to change it dynamically within the bounds
of the controllable space, in the course of processing. Thus, ‘unprotected memory
space’ should be understood as a concept distinct from the concept of ‘con-
trollable space’, which is included in the capability of each process.

4. Explanations of actual constructions
In this section, the actual constructions which incorporate the above ideas
are explained, along with our implementation. The hardware of the next charac-

ters is supposed.

A CONCEPTION OF OPERATING SYSTEM CONSTRUCTION 59

i Tt distinguishes the two modes [master/slave].

ii. It allows us to specify the memory protection boundaries very finely and
to change the whole aspect of protection very easily.

iii. It may not be equipped with segmentation or paging mechanisms.

The specification of the master control program: Each process can issue requests

for the following basic operations on another process or itself, which are pro-
cessed by the MCP.

- wake up (n): to wake up the process indicated by ‘»’. If the process is al-
ready waked up, the wake-up-waiting switch of it is set. One wake-up-waiting
switch is provided for each process.

- block: to halt itself and give control to another process. If the wake-up-
waiting switch is on, it is reset and the process continues its activity without
halting.

- change protect (2): to change the memory protection bounds to ‘@’ within
its controllable space bounds.

- change stateword (7, @): to change the stateword of the immediate inferior
process specified by ‘zn’ to ‘a’. The demanded capability should not exceed
that of the process which has issued the request.

- freeze (n): to freeze the activity of the whole group whose leader process
is ‘n’. '

. unfreeze (n): to unfreeze the activity of the whole group whose leader pro-
cess is ‘n’.

- create (n, m): to create a process immediately inferior to it. An identification
number is given as ‘n’ to the new process by the MCP. The maximum number
of processes which the new process can create further is demanded through ‘m’.
- delete (n): to delete the whole group led by the process ‘x’.

- change priority: to change the priority of itself. ‘

For the sake of simplicity and preservation of independence among pro-
cesses, we have the following restrictions. ‘Wakeup’ operates only on the imme-
diate superior and inferior processes. ‘Change stateword’, ‘freeze’, ‘unfreeze’,
and ‘delete’ operate only on the immediate inferior processes. This restriction
prevents erroneous waking-up of external devices (say, in Fig. 1, E) by imper-
tinent processes (say, G or H), etc., while retaining enough power for the system.

Interrupts are handled in the following way. FExternal interrupts cause a
transfer to the special service routine in the master mode which wakes up the
pertinent process and sets the flag for each interrupt. The trap handling rou-
tine freezes all processes in the group whose leader is the trapped process and
wakes up the immediate superior process.

The inner structure of the master control program: Our MCP consists of a
procedure part (which is a pure procedure) and a data part. The data part

60 H. TAKAHASI & H. KAMEDA

consists of several data blocks of uniform size, and a single block for system
data. One data block is attached to each process, and it contains information
which tells the control state [waked-up/blocked and frozen/unfrozen], the state-
word, the linked lists which show the structure of the system hierarchy, etc.

The procedure part contains routines operating on these data blocks and
I/O control programs. External interrupts, traps, and basic operation on pro-
cesses issued by the user programs result in execution of one of these routines.
The MCP always chooses the process of the highest priority among the waked-
up and unfrozen processes for next execution.

Mailboxes in interprocess communication: One ‘mailbox’ flag should be pro-

vided for one-way communication between each pair of processes in order that
the waked-up process can know which process has waked it up. A process
which wakes up another can only set the flag, while the process which is waked
up can only reset it, so that critical racing is prevented. For two-way commu-
nication, two mailboxes are needed for each pair.

5. An example——a time-sharing operating system
In this section, a TSS constructed upon the above MCP is described.

The structure and specification of a time-sharing operating system: The system

hierarchy of our TSS is shown in Fig. 3. The whole system consists of a resi-
dent part common to all users and a transient part pertinent to each user which

Scheduler

Cleck Tre | { F
Linela 0 =
contr

@) | 05

(a) The system hierarchy
of 3 188

User monitar

Program Program
T Clock File oniter User monif
r | ito
{"“‘(:“'Scheduler‘ + t ;FMCP N

(b) Controllable area of each module (process)

Fig. 3. The structure of an experimental time-
scharing operating system.

is to be rolled in and out. The group of processes led by the user monitor
process forms a functional unit which forms the transient part, and each user
can have his own hierarchy of processes tailored to his specific needs. The
user monitor process includes a command language interpreter. The functions
of some other processes are as follows:

- clock....is responsible for handling the interval timer and is consulted by
the scheduler for time slicing. It is waked up by the hardware timer, and if

A CONCEPTION OF OPERATING SYSTEM CONSTRUCTION 61

that means the end of a time quantum alloted to the running user, it wakes up
the scheduler, etc.

«trc....is responsible for communication with the line control computer. Being
waked up by the line control computer, it sets a flag corresponding to the tele-
type device. :

- scheduler. ... handles mainly the rolling in and out of the user programs, and
acts as an interface between the system processes and the user programs. It
gives each user a virtual operating system and a pseudo-processor which consists
of a variable number of processes and is furnished with a private console type-
writer, clock, and file (see Fig. 4),

Private Private Private Program
a'[arlin console fite monttor
cloe

Absolute
ang

To be varied frem
program to program

Fig. 4. The structure of a virtual operating
system given to each user.

Since the space controllable to the user monitor process of each user includes
that of all his processes, swapping is required only for the space of the user
monitor process. To suppress the activities of the processes of the user being
swapped, the freeze operation is found effective. When this process is waked
up by the clock process and that means the end of the time quantum of the
running user, it scans the flag for all terminal devices, lists the demanded users
in the ready-user queue, selects the next user, freezes the running user, wakes
up the drum for swapping, and unfreezes the next user.

When this process is waked up by the user monitor process, the request
from the user is answered, i.e., the pertinent processes are waked up for these
services by the scheduler.

The characteristics of our TSS: This section shows how the TSS makes use of
the features of the MCP.

In our TSS, adding the process group of a user to the ready-user queuec is

something different from making a process ready in the MCP, but the scheduler
takes care of the following correspondence between them.
The state of a user is if his processes are
(B) blocked, all in the blocked or frozen state.
(out of the ready-user queue)

(R) ready, at least one of them in the waked-up and
(in the ready-user queue) unfrozen state.

62 H. TAKAHASI & H. KAMEDA

Thus, at the stage of the scheduler, various events which lead to adding of a
user to the queue, as well as various events which lead to the deletion of a
user from the queue, are treated in a uniform fashion, and the distinction of
such states as input wait, output wait, waiting command, working, dormant[4],
ete. is irrelevant at this stage. Thus our scheme is more flexible, for example,
in that it allows parallel I/O operations.

If a user intends to make use of the interruption feature (requirement I of
Sec. 3) in his own program, he may arrange his program hierarchy as in Fig. 3.
Normally, only the program process is in the waked-up state and the remaining
two processes are in the blocked state. When the input key is pressed while
the system is not in the input mode, the system wakes up the user monitor
process, which inspects the code, finds out that it is not the quit code and
wakes up the interface process, which controls the activity of the program
process according to the code. This interface process is suitable also for run-
ning online debugging programs.

Requirement II is fulfilled in the following way. Since the clock, trc, and
user monitor processes have no common controllable space (see Fig. 3), they
cannot interfere with one another. The restrictions on basic operations on
processes (Sec. 4) prevent many malfunctions in lower processes from spreading
out. Since the scheduler process protects its own unused space, it can prevent
itself from interfering with the inferior processes erroneously, etc.

The clock and trc processes are similar to user programs in that they can-
not destroy the scheduler and are controlled by it, whereas user programs are
not distinguished from system programs in that both have the same set of MCP
calls and trap functions. Thus, the MCP has realized the graded organization
of the operating system.

The system description language: In order to improve the flexibility of the

system construction, the system programs, except the MCP, were written in
FORTRAN 1V, whenever possible. This resulted in a drastic reduction in the
programming and debugging task with little overhead by practically eliminating
all clerical errors. The MCP occupied about 1K words, and the resident TSS
monitor occupied about 2K words.

6. Conclusion

Interrupts (external interrupts, supervisor calls, and traps) are hardware func-
tions which are indispensable to any operating system, and an MCP that makes
use of these hardware functions to bring universal and useful software entities
or concepts may form the core of any kind of operating systems. The tree-like
system hierarchy introduced makes the distinction between system programs

and user programs a relative one. New basic operations on processes (freeze,

A CONCEPTION OF OPERATING SYSTEM CONSTRUCTION 63

and unfreeze) are proposed and examined. A generalized MCP is sketched, and
an experimental TSS is roughly described and scrutinized. The actual experi-
ment presented here provides qualitative justification of our scheme, although
quantitative evaluation of the system is still left open.

The authors express their gratitude to Professor Eiiti Wada, the TSS group
of the Central Research Laboratory of Hitachi, Ltd.,, and the members of the
Computer Center of The University of Tokyo for their cooperation and valuable
discussions.

References
[1]1 Dijkstra, E. W., The Structure of “THE” Multiprogramming System. CACM 11, 5 (1968),
341-346.
[2] Graham, R. M., Protection in an Information Processing Utility. CACM 11, 5 (1968),
365-370.

[31 Lampson, B.W., A Scheduling Philosophy for Multiprocessing Systems, CACM 11, 5
(1968), 347-360.

[4] Saltzer, J. H., CTSS Technical Notes. MAC-TR-16, MIT (1965).

[51 Saltzer,]J. H., Traffic Control in a Multiplexed Computer System. MAC-TR-30, MIT (1966).

[61 Witt, B.], The functional structure of OS/360, Part II Job and task management IBM
Syst. J. 5, 1 (1966), 12-29.

