Information Processing in Japan Vol. 11, 1971
The Design Language of Computer
HirosHi HAGIWARA* AND YOSHISUKE Kurozumr**

1. Introduction

The steps of computer design are 1) system design, 2) logical design, 3)
packaging design, and 4) circuit design. In this paper, we deal with the com-
puter-aided design language in system design and logic design. Since first
proposed by Iverson[1] in 1962, many describing languages or design languages
in these fields are introduced and discussed. There are Dully’s [2], Friedman’s
[3], and other people’s. We can call these languages register transfer language.

In Japan, Takashima[4] studied the simulation of logical design in 1963.
The first design language was proposed by Okada[5] and Motooka. This logic
design language had five levels as the language structure. It is useful that
manmachine communication can be done between two adjacent levels. The
most problem-oriented level in the five levels is the same as register transfer
language. The most machine-oriented one is suitable to a logic chart.

We propose the design language of computer which covers system design
and logic design. Because system and logic designs are very difficult steps in
computer design, we divide this language into three levels as follows: 1) transfer
level, 2) block level, and 3) module level.

2. Function of Computer Design Language

It is the design to decide specifications of a system (macro specification)
fitting for needs, to decide specifications of parts (micro specification) fitting for
the macro specification, and to construct the macro specification by the micro
specification. In design of a computer, system and logic designs are macro
designs, and packaging and circuit designs are micro designs. So, computer
design language should have the following functions.
2.1 Macro Language

(1) input language

The input language which is the first language in computer-aided design
must be able to describe all capabilities of design.

(2) block of system

There are some blocks of construction such as system, unit, and device in

This paper first appeared in Japanese in Joho Shori (the Journal of the Information Proces-
sing Society of Japan), Vol. 12, No. 2 (1971), pp. 93-102. ‘
* Faculty of Engineering, Kyoto University.
** Faculty of Science, Kyoto Sangyo University.

127

128 H. HAGIWARA & Y. KUROZUMI

a computer. Macro language must be able to decribe these blocks and the
linkage between these blocks.

(3) parallel processing and priority processing

Not only parallel processing in each step but also parallel processing or
priority processing in the above blocks appears in the design of a computer.
It seems to be difficult to describe these processing in languages proposed by
other papers.

(4) hardware instead of software

One of the reasons for requirement of the design language of a computer
is to replace the part which is processed by software with hardware. So, com-
puter design languages must be able to describe all procedures which general
programming languages can describe.

(5) simulation

Simulation is essential to the design. It must be perfect describe the timing
for simulation.
2.2 Micro Language

(1) output language

The program described by this output language is used as input data to
make connection lists, parts lists, and time charts in packaging design and
circuit desigfl.

(2) block of circuit

Circuit has some blocks such as element, module, and package. It is im-
portant to describe these blocks and the linkage between these blocks.

3. Transfer Level Language (T-language)

T-language is a language which describes macro specifications. A program
described in T-language is called a procedure. A procedure consists of the
following four parts.

(1) declaration part

To design a computer, we need many elements and modules such as regis-
ters, counters and adders. We declare these name, kind, size, and response time
in this declaration part. There are three declarations: 1) module declaration
which declares standard modules, 2) block declaration which declares blocks
described in B-language (see 4.), and 3) procedure declaration which declares
large units described in T-language. For these declarations, a procedure is able
to have the block structure, because there are blocks and procedures in the
declaration part.

(2) function part

In the function part, combinational logics among modules are described.

For example, three register are named 4, B, and C. We describe the circuit

THE DESIGN LANGUAGE OF COMPUTER 129

that if terminal F is off, then the content of A is transfered to C; if terminal
F is on, the content of B is transfered to C. Fig. 1A illustrates the circuit
described in the sequence part. This circuit is a sequential circuit and branches
to two states which increase the number of states and reponse time. Fig. 1B
illustrates the circuit described in the function part. This circuit is a combina-
tional circuit which can select registers in high speed and no branch of state.

F 0B A

¢
Fig. 1A. Barnch of state in Fig. 1B. Selecting circuit in com-
sequential circuit. binational circuit.

It is useful to be able to describe a combinational circuit simplified instead
of sequential circuit. A logical function which appears often in the sequence
part must be declared in the function part, and in the sequence part, we can
use only function name.

(3) sequence part

Gates among modules and sequences of generating control signals are de-
scribed in the sequence part. This is a time chart described in a programming
language.

(4) control part

In this part, program-control instructions for conversion and simulation are
described. As a description language of computer, three parts: (1), (2), and (3)
are used. As a design language or simulation language, four parts must be used.
3.1 Declaration Part

Modules declarated by a module declarator have standard interfaces and
timings. These modules are converted to M-language according to the standard
specifications.

(1) memory

memory declares not only main memories but buffer momries, general regis-
ters and i-o-buffer registers.

ex. 1 memory MEMO (CORE(0: 31), AR(0: 15),0);

MEMO is a memory module that its capacity is 2' words and its word length
is 32 bits. CORE is a data register and AR is a address register. The last 0 in

130 H. HAGIWARA & Y. KUROZUMI

ex. 1 is response time. Zero shows that a memory is asynchronous such as a
magnetic drum.

ex. 2 AR=3, DATA=CORE; (Read from the third location.)

AR=5, CORE=DATA ; (Write to the fifth location.)

(2) register

register declares flipflops or registers consisted of them. A flipflop has many
kinds such as RS, JK, T, D, and RST. As the method of designing a gate be-
tween these fiipflops is different, the attribute symbol such as rs, jk, tg, dl, and
st is written after a register declarator. If there is no attribute symbol, flipflop
is considered to be RS.

ex. 1 register DATA (0:31), F, G, W; register jk JKFF (0:5);

ex. 2 W=DATA(0); DATA (0)=DATA (31); DATA 31)=W;

(3) counter

This is a up or down counter that its step is =1.

ex. 1 counter C (0: 3);

ex. 2 C=C+1; if C=7 go to ABC;

(4) adder

A adder declared by adder has the function that the operands are the out-
puts of two registers and one flipflop, and a sum or defference of three operands
can be sent to the other register.

ex. 1 adder ADDER (SUM (0: 31), C, 3);

ex. 2 DATA=X-Y; DATA=X+Y+{F;

(5) shifter

shifter declares a shift unit which shifts many bits in a unit time.

ex. 1 shifter SHIFT (SHIFTD (0: 31), SHIFTC (1: 4), 4);

ex. 2 DATA=C shr X; X=10 shl X;

(6) internal

internal declares internal terminals. It is useful to linkage among modules
and redefine names to modules.

ex. 1 internal INT (0:31);

(7) external

external declares external terminals. Declarators without external are local
which effect nothing to the outer programs. But, a external terminal is global
which is used to linkage the outer program.

ex. 1 external EXT (0:31);

(8) declaration of multi-dimensional array

About registers and terminals, 2-dimensional array appears in the declaration
part. In this case, a cross section of the array is often used by statements of
the sequence part. A element of the array is merely used. So, declaration of
array in our language is different from it in the standard programming language.

THE DESIGN LANGUAGE OF COMPUTER 131

ex. 1 register REG (1:10) (1:10)
ex. 2 REG (1)=REG (2);
3.2 Function Part

The function part has only function statements which show the relation of
logical function among modules.

ex. 1 function A(0)=B(1), F=A@0)V A(1);

The following expressions are useful to simplify the long expressions which
often appear in practice.

ex. 2 funection F=(VvA4), G=(NAI), I=1,31,2), AD)=BI)\F, I=0,31);

The first expression shows logical OR of all elements. The second expres-
sion shows logical AND of odd number elements. The third one shows 32
expressions of similar form.

3.3 Sequence Part

In the head of the sequence part, subroutines are described. There are open
subroutine and close subroutine. These declarators are open and close respec-
tively.

The body of the sequence part consists of the following statements. A
separator of statement is ;(semicolon).

(A) Unconditional statement

A unconditional statement explains some actions in the state. It has some
instructions separated by ,(comma). The expression that a statement consists
of some instructions simplifys the description of parallel processing.

(1) assignment statement

A assignment statement has the following instructions.

simple assignment instruction ex. A=B,
arithmetic assignment instruction ex. ACC=A4+B,
logical assignment instruction ex. F=A4(0)V A(1),
shift assignment instruction ex. B=C shr B,

(2) call statement

This statement has at least one call instruction. A call instruction calls a
open or close subroutine.

ex. SUB; OPEN (Cl1, C2);

(3) go to statement

A go to statement is used to indicate the junction of sequence. A label is
written after go to.

ex. go to ABC;

(4) compound statement
To describe such parallel process that its processing time is variable, a com-

pound statement is used. A compound statement consists of some compound
instructions.
ex. begin S; S; -~ S end, begin S; S; .- S end;

132 H. HAGIWARA & Y. KUROZUMI

(B) Conditional statement

This statement shows a branch of state and does not generate new states.

(1) if statement

A if statement is used to branch to two states or wait in a state.

ex. if F then go to ABC; if F then wait;

(2) switch statement

This statement is used to branch to many states.

ex. switch INS (0:3)=S0, S1, S2, -, S15;

(C) Label

Labels are able to be added to the head of a statement. A label shows the
joinning point of sequence and the phase of a state.

ex. ABC: A=B; ABC*1: ACC=A4+B;
3.4 Control Part

A conversion method of control circuits is designated in this part. The
conversion methods are sequence, assignment, and microprogram.

ex. control assignment jk (L1, L2, ---, L10);

And, the control of simulation is designated in this part. These designator
are input, output and time.

4. Block Level Language (B-language)

B-language is a language which describes micro specification. A program
described in B-language is called a block. A block consists of module declara-
tion, block declaration, function, and block call. The module declaration and
function are explained in T-language. A block call is the same as subroutine call
statements. It calls a block which declared by a block declaration.

Example A Example B
block HA(X, Y/S,C); block FA(X, Y, C0/S, C1);
S=(XVY)A~C; internal P1, P2;
C=XNA\Y; block HA(XH, YH/SH, CH);
end; SH=(XHV YH)A~CH
CH=XHAYH;
end;
HA(CO, P1S, P2); HA(X, Y/P1, P2);
X o
+ Co® ' S
X || -
__\ HA + C
* °C Y o— -
Y o j P
A: Half adder B: Full adder

Fig. 2.

THE DESIGN LANGUAGE OF COMPUTER 133

Cl=P1VP2;
end ;

5. Module Level Language (M-language)

This language is suitable to describe the connection tables. It consists of

only module statements as follows.

{module statement):: =(label) : (module name)

((input terminal list)/{output terminal list})

ex. BOOL: BOOL-1AN(A(0)-RS1, A(1)-RS1/BOOL-30R)

6. Conclusion

We propose the design language of a computer. But it is important that

we describe many computers in this language and we study to make a converter
and a simulator of this language.

[1]
[27]

£31
[4]
£s1

References

Iverson, K.E.: A programming language. John Wiley and Sons, NewYork (1962).

Dully, J.R. and D.L. Dietmeyer : A digital system design language (DDL). IEEE Trans,
C-17, pp. 850-860 (Sep. 1968).

Friedman, T.D. and S.C. Yang : Methods used in an automatic logic design generator
(ALERT). IEEE Trans, C-18, pp. 593-614 (July. 1969).

Takashima, T. et al.: A universal program system simulating logic. Information Proces-
sing of Japan, pp. 64-72 (March. 1963).

Okada, H. and T. Motooka : Logical design language. The Journal of the Institute of
Electronics and Communication Engineers of Japan. Pp- 2353-2360 (Dec. 1967).

