Information Processing in Japan Vol. 12, 1972

A Practical Method of Constructing LR (1) Parsers and

on the Properties Peculiar to LR (1) Grammars

SHoj1 SERIMOTO*

1. Introduction _

A method of constructing parsers for LR (k) grammars has been given first
by D. E. Knuth. But the parsers by Knuth’s method have generally too large
sizes because of their parsing tables. So, many cases of giving small and practical
parsers for LR (k) grammars have been reported. For example, A. K. Korenjak
has decreased the size of the processor by partitioning a given grammar into a
number of smaller part. A next example has been given by Hayashi. Using a
simple mapping of states of Knuth which will be used in this paper, the number
of entry states has been decreased. His graphical method may need extra in-
formations of the left contexts and path functions to parse a sentence. For an-
other example, D. Pager has given a solution to the problem of the minimization
of the number of Knuth parsers (DPDA).

We will show that some properties peculiar to LR (1) grammars exist, which
may not hold in LR (k) grammars (£>1), and that using these properties, a

method of constructing practical LR (1) parsers driven only by a reduced parsing
table is introduced.

2. Knuth’s Method for LR (k) Grammars

We show the method of constructing LR (k) parsers given by Knuth and
Korenjak.

We suppose that a context free grammar G=(Vw, V1, P, So) is given, where
the number of production rules in P is = and they are numbered from 1 to 7.
The p-th production rule is represented as A,—Xp1...Xpny(n,>0).

Then we give the k-augumented grammar G’ of G, such as

G'=Vy,Ve, P, So), where Vi'=VyU {So'},

Vi'=VrU {$}(#€VyUV7) and P'=PU {So'—>So#}.
We assign a number O to So'—So* and call ¢ the endmarker. Rewriting G’ to
G=(Vw, V1, P, So), we will use this G hereafter. Definition: Following the two
functions are defined for

G=WVuy, V1, P, So) and £>0.
(a) H(a)={teV|a=tp for some S€V*}

This paper first appeared in Japanese in Joho-Shori (Journal of the Information Processing
Society of Japan), Vol. 13, No. 3 (1972), pp. 170~178.
* Mitsubishi Electric Corporation

100

A PRACTICAL METHOD OF CONSTRUCTING LR (1) PARSERS 101

(b) H'(a)={t€Vr*|a=t8 for some B€V*, but a=8
does not contain a step of the form Ay=7 (due to A—e in P)}

Each state s of the LR (%) parser by Knuth consists of triplets [, j, w] called
‘partial states’ and the parsing table 7(G) [3] which drives the LR (k) parser is
generated for a given LR(k) grammar G as follows:

(i) First, we define the start state so= {[0, 0, #+7}.

(ii) Second, we define the set s’ for a state s as follows: s’ is the smallest set
satisfying the next equation.
s'=sU{lq, 0, z]|[p, j, w]Es such that j<n,,

XpiianAg and x€H(X pien... Xpnpw)}

(iii) Using s, the set of lookahead strings of s, i. e. L(s) and an action As(y)
for each yeL(s) are determined as follows:

(1) yeL(s) and As(y)=shift if [p, j, wlEs', j<n, and yeH' (Xpiien... Xpnpwo).
(2) ye€L(s) and Asly)=reduce p if [p, ns, y1Es and P20,
() ve€L(s) and As(y)=accept if y=%* and [0, 1, #*]es’,

(vi) Next, the set of stack symbols of s, i. e. S(s), and goto symbol Gs(Y) for

each YeS(s) are defined as follows:
S(s)={Y|[p, j, wles, Y=Xp+n}
Gs(Y)=A{lp, j+1, wl|[p, j, wles, Y=Xpin)

(v) Finally we choose a Gs(Y) for some s and Y, which has been given through
the above process and is not yet entered in 7(G), and repeat above steps
for the state Gs(Y) until the parsing table 7(G) is completed.

Using the table 7(G) and a pushdown stack with 2 tracks for control, the
LR(k) parser examines an input string from left to right and attempt to reduce
it to So.

We denote the position of the input tape and the contents of the stack by
the notation:

0% dn ai...apt (*)
®L1... 7Ty

Let the original input string be zai...a* €Vr*§*, then this notation indicates
that:

(1) substring = was reduced to z1...zs,

(2) the lookahead string is ai...a,

(8) ¢ is not yet handled at this point and

(4) the upper track of the stack contains the state
names, o, Si,...,Sz.

The parser operates as follows.

Initially, the start state so is placed on the stack and the fitst input string
with length % is the initial lookahead string. The symbol @ is just the start

marker.

102 S. SEKIMOTO

After this initial operation, assume that the parser has reached the configura-
tion shown above, then:
(i) The string ai...ar is examined whether it is in L(ss) or not. According to
the result, the parser takes one of the following operations.
(@) If ai...ae is not in L(s) then this is rejected by the reason that the input
string is not in L(G).
(b) If Asa(as...ar) is shift then a1 is pushed on the lower track.

S$0S1...52
az...art

@®XLi..Xpa1

(¢) If Asn(ai...ar) is reduce p then the rightmost 7, elements in the both tracks

are popped off and Ap is pushed on the lower track.
S0S1...Sn—np ‘
lar...axt
OX1.. Ln-nplp|
(d) If Asn(as...ar) is accept then this process terminates.

(ii) Next, if Ass(ai...as) is shift or reduce p then a goto state Gsa(a1) or Gsu—ny(A»)
is respectively determined by the parsing table and it is placed in the right-
most empty position of the upper track.

By the operation (ii), the configuration of the stack returns to (*) and the above

operation is repeated until the input is found out as erroneous, or As#(}*)=ac-

cept occurs at the configuration of
S0SF "
@50

3. Definition of Z-state
We will define a mapping from Knuth’s states (K-states) into Z-states. We

assume that a set of all K-states of a given LR(k) grammar G is presented by
S={5:]0<i<n}. Then we define a mapping f(s:) and a set of its images, as fol-
lows:

f(s)=1{[p, j1I[2, J, wlEsi}

Zy={f(s:)|s: =8}
We call each element of Z, to be Z-state.

4. Some Properties of LR(1) Grammars
We show that there are some properties peculiar to LR(1) grammars. Now
we present some theorems without proofs.
Theorem 1: Let a given grammar be LR(1) and assume that f(s:)=/f(s;) is sat-
isfied for some K-states s; and s;.
Then if the conditions a€Vr and Asi(a)=shift hold, a=L(s;) and
Asj{a)=shift are both satisfied.
Corollary 1: Let a given grammar be LR(1) and assume that f(s:)=f(s;) is sat-
isfied for some K-states s: and s;.

A PRACTICAL METHOD OF CONSTRUCTING LR (1) PARSERS 103

Then if the condition Y&.S(s:) holds for some Y&V, Y&S(s;) and
F(Gsi(Y))=f(Gsi(Y)) are both satisfied.
Definition: For some K-states s: and sj, if the conditions f(s;)# f(s5)
and F(Gsi(Y))=f(Gsi(Y))=Z: hold for Z:&Z, and YeS(s:)NS(s;)
then s; and s; are said to be ‘annexed to Z: by mapping /” and Z:
is said to be ‘annexed point of s; and s; by mapping /.
Definition: If the equation f(si,)=/(s:,)=...=f(s:;)=Z+ holds for some K-states
Siiy Sizyeo, Sip, then Zy is said to be ‘heap point of si,,5:,,..., 5i; by mapping £
Definition: A sequence of K-states, So, S1,..., Siyere, Snpyy 1S given and if it satisfies
the following conditions:
1) so is the start state,
2) si=Gs;-(Y)) for 1<i<i+n, and HY:EV,
3) Asigtnsa)=reduce p for a€L(si+n,) and
Ap—Xp1.. X pnp, where Xpi=Yi4 for 1<Ii<n,
4) acL(s*) for Gsi(Ap)=s*,
then we call the K-states sequence o, Si,..., Si,..., Si+=, to be ‘p-reducible
for @’ and also the sequence so, 51,..., 5i, $* to be ‘reduced sequence (by
2).
Theorem 2: Let (={s;}0<j<i and {'={s/}0<j<i be two K-states sequences
such that (1) f(sj)=F(sj") for 0< <1,
(8) € is p-reducible by « and
(3) ' is p'-reducible by a.
If Ags,.,(Any) (a)=Acs,.,, (Ans') (a)=shift,
then p=p'.
Corollary 2: Assume that
(1) so, 51,..., si: K-states sequence in a given LR(1) parser,
() Zo, Z1,..., Z;: Z-states sequence such that f(s;)=Z; for 1<j <4,
(3) the above K-states sequence is pi-reducible for a(€L(s:)), its pi-
reduced sequence S,..., Si—np, SP* is also pereducible for a and
repeating this process m times we get K-state sequence So, Si,...,
Si-r, s“?* which is no longer reducible for «,
where r=n,,+np,+...+7pp,
(4) As“*(a)=shift.
If Zi is the heap point of s; and s; by f and if a€L(s;), As; (@)=
reduce 21’ and 1’32 hold, then the annexed point leading to s;
by f is included in the subsequence Zi-ri1, Zi-r42,..., Zi.

5. LR(1) Parser Using Z-states

We will give the parsing table T(G). for a given LR (1) grammar, using Z-states
instead of K-states.
(i) We get Z-states from K-states by Zo={f(s:)[s;€8]}.

104 S. SEKIMOTO

(ii) The set L(Zy) of lookahead symbols for Z:eZ; is defined by L(Zk)——-;_JIL(Sz',),
where Zr=f(si,)=...= f(si).

(iii) The set Az (a) of actions for a€L(Z:) is defined by AZk(“):nUAS,'I (a) for
all si; such as f(si)=2Zu e

(iv) The set S(Z:) of stack symbols for Z: is defined by S(Zi)=S(s:)=...=5(ss).

The goto state Gz(Y) for Y&S(Z:) is defined by

Gz(Y)=f(Gsi(Y))=...= f(Gsy,(Y)).

The definitions L(Z:), Azi(a), S(Zi) and Gz,(Y) are well-defined in consideration
of Theorem 1 and its corollary.

Now, we assume that there is the same main stack as mentioned above, ex-
cept that K-states are replaced by Z-states as follows:

YAYATAS
a
QL. Z;m |

By the results of the previous section, we may decide a next action or ac-
tions by means of T(G)..

1If aeL(Z») and Az,(a)=shift in the above configuration then the next action
is shift and the next goto atate is Gz.(@)=Zm.1.

If acL(Z,) and Az.(a) is a set of reduce p:(1) then there should be at most
one sequence of reductions pi®,..., pi, such that after the completion of the
successive reductions,

ac L(Z*) and Az*(a)=shift or accept
are satisfied for the recent goto state Z* which is in the top of the stack and
may be got by the result of the last reduction. If there is such a sequence of
reductions then it is the true sequence of actions else the original input a is
false.

If a€¢L{Zn), the input a is false.

We can construct LR(1) parsers using T(G)z and 3 push-down stacks.

6. Conclusion

The method proposed in this paper is based on the properties peculiar to
LR(1) grammars respecting the imuge of a simple mapping f of K-states. After
this work, we have got a family of mappings, which is a proper subset of equiva-
lence relations of all K-states of a given LR (k) grammar. We call each mapping
in the family analytical and this family of mappings is a direct extension of f
in this paper to the case of LR(%) grammars.

We have also got an algorithm to find the analytic functions for a given
LR (k) grammar, which give the minimum number of image states of K-states.

References

[1] Knuth D. E., ‘On the translation of languages from left to right’, Information and Con-
trol 8, 607-639, 1965.

A PRACTICAL METHOD OF CONSTRUCTING LR (1) PARSERS 105

[21 Pager D., ‘A solution to an open problem by Knuth', Information and Control 17, 462-473,
1970.

[31 Korenjak A. S., ‘A practical method for constructing LR (k) processors’, Comm. ACM 12,
613-623, 1969.

[4] Hayashi T., ‘Development of LR (k) analyzer’, Proc. IPS]11 Nat’ 1 Conf., 1971.

[5] Sekimoto S., et al., ‘Simplification of LR (k) parser’, A 71-116/1 771-101, IECE, 1972.

