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Ordering of Pivotal Operations on Sparse System
of Equations

AKIO SAKAMOTO*, IsAO SHIRAKAWA** AND HIROSHI OZAKI**

1. Introduction

A matrix which has many zero elements is called a sparse one. In the
computer-aided analysis of fairly large system of equations, of prime importance
are sparse matrix storage and solution techniques in terms of reduction in
memory space, computation time, and round-off errors. These techniques have
recently attracted a considerable amount of interest, and have been extensively
developed [1]-[4].

On the subject of solving sparse system of equations, a number of authors
have considered the problem of sparsity exploitation associated with the so-called
LU decomposition [5], intended mainly for reductions in memory space and
computation time [6]-[9]. On sparsity-directed techniques in calculating driving-
point and transfer immittances for some specified ports of a network from its
primitive immittance matrix, the authors have discussed the block-pivoted con-
densation based on network decomposition [10], [11].

In the present paper we define a pivotal operation, which includes both the
pivotal operation in the LU decomposition and the pivotal condensation in the
process of calculating driving-point and transfer immittances from a primitive
matrix, in point of the growth of nonzero elements. Then we formulate an
optimal ordering problem of these pivotal operations and present some approach
to the problem with the use of a newly defined ‘pivoting graph’.

2. Optimal Ordering Problem
Given an nx#n system of linear equations
Wolx>=|6>, det Wo=0, (1)

where |z> and |4> denote column vectors, we henceforth assume without loss
of generality that the diagonal elements in Wo are nonzero. The LU decomposi-
tion of Wy involves the breaking down of Wy into We=LU, where L is lower
triangular in form with unit as the value of every diagonal element and U is
upper triangular. On the other hand, consider the case when, given a primitive
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immittance matrix Wy and a source vector |6>=[by,bs, -, b,,0,--,07 with the
superscript ¢ denoting the transposition®, we are to seek the coefficient matrix
W of the condensed form Wiz>=|6> of (1), where |£2>=[z1, zs, -, 2,]* and
|6>=[b1,bs, -, b,]". In this case, we apply to W the operation, so called the
pivotal condensation, with respect to the 4-th variable z«(k>p+1) one by one.
We first define a sparsity-oriented pivotal operation which includes these
two operations in point of the growth of nonzero elements. For this purpose,
we define the binary matrix X(W)=[x:;], associated with a given square matrix
W=[w:;] (wii>0) of order m, with each zi; taking the value of unit or zero
such that
1; wiix0,

xij:{o; wij=0. (2)
Definition 1: Let W**=[w;;**] denote a matrix of order m—1 obtained from W
by applying some operation with respect to row % and column # and then deleting
row kand column % If through this operation the following relations hold for
the elements z:** of X(W*%)

Zii ¥ =2+ Zine 2hs for all i, j=%, (3)
where the addition and multiplication are Boolean ones, then we designate this
operation as the s-pivoting with respect to row % and column 2
Definition 2: Given a square matrix W, define the sets A: and B: associated with
column |z:> and row <ai| of X(W), respectively, such that

Au={jlza=1, j=B}, (4)

Be={i|zu=1, %k}, (5)

Note that if X(W) is symmetric, then Az=2Bs.
Definition 3: For each element i of B:, define the set L as

L= {j|z;i=0, je A, ieBs} = As—[{i} U A/ (6)

As is readily seen, z;;=0 and z;*=1 for any jeLu, that is, during the s-
pivoting with respect to row % and column % a new nonzero element is created
at the (j,7) position such that jeLu. If we denote by M«W) the number of
the nonzero elements which are newly created by the s-pivoting on W with
respect to row % and column %, then My(W) is given by

MW)= 3 | Luil, (7)

i€Bz

where |-| denotes the number of elements in the set.

Given a matrix Wo of order » on which ¢ s-pivoting operations are to be
applied®, we assume that these ¢ rows and columns are located in the leading
position of Wo. If this is the case, associated with the symmetric group P of
a set {1,2,-,q}, let S represent a set of the ordered sequences defined as

1) In the usual network analysis p=2.
2) In the LU decomposition g=n.
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(1 2 g )aP}, (8)

SI{S :(0'1 02, °*°, 0
v > H > q) 01 O3-+-0q

and for any s=(ki, ks, -+, kg)eS define 4(s) such that

A(s)=Mp(Wo)+ Mp(Wo*k) 4 4 Mg (W o*bika-ka-), (9)
where, for a matrix W of order m and any ordered sequence m=(k1, ks, -, ks)
(ki<<m for all 7). we denote W*7 as follows,

Wm — T $kabarkn = (o (W $R YRR, . Yo, (10)
Then 4(s) represents the total number of nonzero elements which are created
all through the ¢ s-pivoting operations, firstly with the 4ith row and column,
secondly with the %:ith row and column, ---, and lastly with the k4th row and
column. Thus, we can formulate the following optimal ordering problem :

Seek an optimal order s=s* such that
As*)= MiSn ACs). (11)

3. Pivoting Graph

Associated with a square matrix W of order m, we define a weighted graph
G=[V(G), E(G)] called the pivoting graph of W as follows, where V(G) is the
set of the nodes of G and E(G)cV(G)XV(G) the set of the edges of G.
Definition 4: The pivoting graph G of W is an oriented graph such that
(i) each v:£V(G) (i=1,2,--,m) corresponds to column 7 of W,

(ii) to each wi;x0 (ixj) of W there corresponds an edge (vi, vi)e E(G) orienting
from v:i to vj, and

(iii) to each v:eV(G) and to each (vi, v,))EE(G), the sets A; and Li; are attached,
respectively, as their weights.

This pivoting graph G of W involves the information of which zero elements
of W will be replaced with nonzero ones through the s-pivoting with respect
to the kth row and column of W. If for (ve, vi)eE(G) Lii2 ¢¥, then the s-pivoting
will substitute each w;;=0 with jeLwx in column 7 by w;**x0.

We now consider the procedure to derive the pivoting graph G** of W**
from G of W,

Lemma 1: V(G**) and E(G**) of G** are obtained from G such that
V(G*H=V(G)— fuvil, (12)
E(G*H=[E(G)— U {(ws, v} — U {(wp,v:)} JUL U H], (13)

heAr i€Br ieBr

where if Lu=¢ then Hi=¢, otherwise, H;= {(v;,vi)| jeLui}.
Lemma 2: The A** B:** and Li;** associated with W** are obtained from

A;i and B: of W as follows,

A;UAs—[i, k) 5 icBs,

A; ;s 1¢Bs, (14)

A

3) ¢ denoted an empty set.
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BiUBy—{i,k} ; icAy,

Rk _ > >

B; _{Bi . i Ay, (15)
Li**= A —[{j} U A**]. (16)

For a pivoting graph G of W, let MyG)=MW). Furthermore, let Uy be
the set of the nodes vr of Gy corresponding to rows » and columns r of W,
with respect to which s-pivoting operations are to be applied. Then we can
find an ordered sequence sz=(h1,hs, -+, hs), for each A: of which is corresponding
to wvs; in Uo, such that

Mp(Go)+Mp Go*)+ - + Mp (Go*hbe bty =0, (7)
where Go*Mhahi is a pivoting graph of W*whehi for i=1,2,---,¢—1, and for any
eV (Gt Us

My Ge*s2)x0, (18)

For any such s: the following theorem holds.

Theorem: Let S*={s;*} CS denote a set of the sequences s:* satisfying (11).
Then there exists a subset ST={s;T} of S* such that any sequence s: satisfying
(17) and (18) is a leading subsequence of some s;it in S, that is,

sit=(sz, 55,7, (19)

4. Near-Optimal Ordering

Let U:=UoNV(Go*) and |Uz|=r. Then to seek an optimal subsequence s;,!
of s;t, we might have to evaluate 4(sz, s¢) for all the r! different ordered sequences
se=(l1, 2, -+, &) with veieU: in the worst case, even if we employed efficient
techniques such as the branch-and-bound method. Thus it is of practical use
to seek a near-optimal order.

Ogbuobiri et al. [8] pointed out the following three schemes of seeking
near-optimal sequences.
Scheme 1: Seek a sequence s =(ki, &, -+, kr) such that for the graph Gr=Gy*sz,

| Bty | < | Byl <+ < | Br, |, veieUoNV(Go). (20)

Scheme 2: Seek a sequence s®=(ky, ks, -, k) such that for each graph G
=(Go*s2)*si with s;=(ky, ks, -, 8:) (G=0,1, -+, r—1)

B, | = Mi Byl
|Brinl = Min [IBr] (21)

Scheme 3: Seek a sequence s®=(ky,ks, -, k) such that for each graph G
:(GO*X:)*H With Si:<k1, k2> T k’) (Z"_‘Oa 13 "',7"“1)

M, (G¥)= Min [My(G®)]. (22)
melUpN V(GE) v

In what follows we consider another method of seeking a near-optimal order
si#=(sz, ;%) for s;1=(se, s;M.
Step 1) Given a square matrix Wo, put G«Go, U<U,, n<2 (null sequence), and
4<-0, then proceed to the next step.
Step 2) If U=¢, then stop the prcedure. Otherwise, go to Step 3).
Step 3) Seek a set Vi={v:| My(G)=0, v:eU}. If Vi=9¢, then go to Step 4). Other-
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wise, associated with each wvreV1, let s=(ki, ks, -+, kv;)) for arbitrary order of the
ki, and put 7<(x,s), G<G*', and U«<U—V1. Then return to Step 2).
Step 4) Seek a set V: of the nodes w:eU to give

Mi{/l[ >3 | L]+ 1Bl 1 (23)

vieU jeBi
If |V2|>1, then go to Step 5), or otherwise go to Step 7).
Step 5) Seek a set Vs of the nodes veV2 to give
Max[ U L;;]. (24)

vieVy i€V;
If |Vs|>1, then go to Step 6), or else go to Step 7).
Step 6) Seek a set Vi of the nodes wieVs to give

Min[ 3 { 2 [La*[}]. (25)

VieV, jeBi heLij

Then choose an arbitrary »: in V4, and go to Step 7).
Step 7) Let e (n, k), G<G*, U<U— {vi}, and 4«4+ MyG), and return to Step 2).

In this process, the cycles of Step 2) and 3) concern with seeking sz of s/#
=(sz,57.%), and once the procedure enters into Step 4), the subsequent cycles of
steps are for seeking sj.t.

[Example] Given a square matrix W, associated with which X(W) is of the
form

2 3 456728

1 . 11

2 11 1

3. 11 . 11 . . .

4. 11 111
X(Wo)=5|. 111 111

6. 11 . .11

71 . . 1111 . .

g8t . . 11 . . 11

91 . . 1.1 . . 11

Let Uo= {v3, v4, -, vg}. We first apply Scheme 3 stated before, then we obtain a
sequence s=(3,6,4,8,9,5,7) for which 4(s®)=14, On the other hand, with the
use of procedure stated above, the sequence s¢=(3,6,8,9,4,5,7) with 4(s¥)=12 is
obtained, and we see that this s* is contained in the set S* of the optimal
sequences.

5. Conclusion

In employing the procedure discussed here, we may be able to see which
zero elements will be replaced with nonzero ones during the course of applying
this ordered sequence of s-povoting operations. Thus, sorting techniques with
storage allocated only for nonzero elements, such as those discussed in [6] which
are to be modified at each growth of nonzero elements, can be simplified by
preparing in advance storage allocation for those newly created nonzero elements.
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