161

A Fault Detecting Pattern Generation Procedure
for a Sequential Circuit

Michio Murakami* and Yasuaki Ozawa*

1. Introduction

The D-algorithm is a very useful and practical method of generating fault detecting patterns for a

combinational circuit [1]. Kubo applied the D-algorithm to a sequential circuit by considering the circuit as a

‘ cascade connection of many replicas of a pseudo combinational circuit element as shown in Fig. I, [2].
But this ‘adaptation has the defect that each FP element is restricted to unit delay, and it cannot be used
with other kinds of flip-flops and inhibited conditions.

To test many types of flip-flops such as J-K, R-S, Latch, and their inhibited conditions easily, we
formulated a procedure of fault detecting pattern generation for a sequential circuit based on Kubo’s
model. It differs from the original D-algorithm and Kubo’s model mainly in the following points.

(1) A flip-flop is regarded as a macro-gate represented by a Boolean equation with an inhibited condition.
(2) By introducing the concept of a Node and a Branch, we cleared up the D and C-operations. (The
terms relating to the D-algorithm such as D-operation, D-intersection, etc. are defined in Ref. [1].)

In this paper, the concept of a Branch is first described, then the procedure of solving the Boolean

equation of a flip-flop is covered in detail.

: gate port
flip-flop port
primary input

: primary output

_loer
Pt {—

GP

() General form (b) - Modelled form

Fig. 1 Model of a sequential circuit

2. Extension of the D-algorithm using a Node and a Branch

A Node is defined as a condition in which one of several possible operations must be selected as the
next operation during D and C-operation. A Branch is defined as the operation that is selected at a Node.
Using the Node and Branch, we cleared up the operation of the D-algorithm and formulated a procedure.
It generates fault detecting patterns by creating and deleting Nodes and Branches during D and
C-operation. When an inconsistency occurs, it goes back to the last Node and selects another Branch. The
selectioﬁ of a Branch is performed according to the priority condition which is the distance from that

point to a primary input or output in Fig. 1 (b), and assists in generating optimum patterns.

This paper first appeared in Japanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 14, No.5 (1973), pp. 328~ 333.)
* Component Laboratory, Engineering Development Division, OKI Electric Industry Co., Ltd.

162
A Node is classified into five types.

Type-1: the case of plural elements of activity vector A

i) . | S: SET input

(see Ref. [1]). This concept is also covered in 5 Q R RESET input

. . C: CLEAR input
the original D-algorithm. P: _ CLOCK input

Type-2: the case of plural possible combinations to R — —q QQ Output

D-intersect a flip-flop, for example; if C is D and P
the others are all X at the time N for an R-S c —
flip-flop as shown in Fig 2. There exist three
possible combinations to D-intersect, or to get D Fig. 2 Model of RS flip-flop

or D on the output line at the time N + 1.
(1) Oxn=1, R=0
@ Qv=1,P=0
@ S=1,R=0,P=1
where QN, R, S, P indicate the values on the corresponding lines, and the suffix N indicates
time.

Type-3: the case where a D-intersected flip-flop has two outputs Q and Q, since it cannot be defined
exactly which pass must be selected.

Type-4: the case of plural possible combinations to C-intersect a gate. This idea also appears in the
original D-algorithm.

Type-5: the case of plural possible combinations to C-intersect a flip-flop. For example, if P is 1 and the
others are all X at the time N, there exist two possible combinations to force 1 on QN+1;
(1) C=0,8=1, R=0
(2) C=0,Qn=1, R=0

3. Procedure for solving the Boolean equation of a flip-flop
Many types of flip-flop operation calculating procedures have been devised using a Boolean equation in
sum-of-product form. We use the equation of an R-S flip-flop as an example throughout this paper, which
is:
QN+1=C-S-R-P+C-Qn-P+C-Qn-R (1)

3.1 Forward forcing

This procedure involves forcing implied signals forward toward a primary output during D and
C-operation, and is performed simply by substituting into the equation under given conditions.

For example, if QN, R and C are 0, P is 1 and S is D, Eq. (1) becomes:

Qv+1=(1) - (D) - (1) - (1) +(0) + (0) - (0)+ (0) + (1) + (0) - (0) = (D) 0))]

3.2 Backward forcing and C.intersection
The former is forcing an implied signal backward toward a primary input during D and C-operation,
and the latter is C-intersection. They are almost identical, and performed in the same routine manner.
The general procedure is:
(1) Substitute the values undqr given conditions at the time N into the equation.
(2) If QN+1 is O, calculate all possible combinations which force 0 on all members of the equation. If
QN+1 is 1. calculate all possible combinations which force. 1 on one member.
(3) Delete some combinations which cause inhibition of a flip-flop (ex. S=1, R=1,P =1 in an RS
flip-flop).

(4) In the case of backward forcing, 163
(a) if the number of resulting combinations is only one, force the values in the combination.
(b) if there is a plurality of combinations and a certain variable exists whose value in all combinations
is identical, force that value on that variable.)
In the case of C-intersection, formulate a Node using the resultant combinations.
For example, if QN+1 is 1 and the others are all X at the time N,
1=C-S-R-P+C+Qn-P+C-Qn-R 3
There are three combinations.
(1) C=0, R=0, P=1
(2) C=0,Qn=1, P=0
3) C=0,Qn=1, R=0
If it is a C-intersection, these three make a Node.
If it is Backward forcing, there is a plurality of coinbinations and only C is for all members, and only

1 can be forced on C.

3.3 D-intersection
D-intersection is a procedure to calculate all combinations which force D or D on QN+1 under given
conditions.
It is generally performed as follows.
(1) Substitute the values at the time N into the equation.
(2) Perform the following two steps for each member which has D (f)).
(a) Apply 1 to all other variables of the member.
(b) Calculate all possible combinations which force 0 on all other members which do not have D
(D). (The value of a member which has both D and D is 0.)
(3) Delete some combinations which cause inhibited conditions.
For example, if S is D, C is 0 and the others are all X at the time N,
Eq. (1) becomes:
QN+1=(@D)-R-P+Qn-P+Qn- R 4)
There exists only one member which has D or D (in this case D).

The next three conditions must be satisfied to force D on QN+1.

R-P= (from 2-a) ()]
On-P=0 (from 2-b) (6)
Qv-R=0 (from 2-c) (@]

From Eq. (5), R becomes O and P becomes 1, and QN becomes 0 from Eq. (7). Finally, there is only
one combination to make QN+1 =D, R=0,P=1,QNn =0.
Using these procedures, we can test any kind of flip-flop.

4. Results and conclusions)

This procedure was developed as a part of a fault detecting pattern generating system, and has some
system restrictions. The fault detecting ratio of some examples is about 90 ~ 100%. The undetected
failures come from cases where a circuit has redundancies or cases where the values of some flip-flops

cannot be set to desirable states. Some examples and results of this system are shown in Table 1.

164

Table 1 Results of pattern generating system

Example No. 1 Example No. 2 Example No. 3

Circuit type SL* S+ S

Gates 40 109 154
Flip-flops 8 13 9
Generated patterns 68) 67 104
Undetected failures 0 3 2

Fault detection ratio 100% 99% 99%
Computing time*** 40 sec. 70 sec. 180 sec.

* Sequential circuit with feed-back loop
*¥ Sequential circuit without feed-back loop
*** Time using IBM 360/75 or UNIVAC 1108

The system is implemented by FORTRAN, has about 5500 steps, and is used for LSI testing.

References

[1] JP. Roth, et al.: Programmed algorithm to Compute Tests to Distinguish Between Failures, IEEE trans. on E.C. Vol.
EC-16 No. 5 pp. 567-580, 1967

[2] H. Kubo: A Procedure for Generating Test Sequences to Detect Sequential Circuit Failures, NEC Re & Dev. No. 12,
pp. 69-78, 1968

