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A Practical Root-finding Algorithm

based on the Cubic Hermite Interpolation

Tatsuo Torii* and Tsuyako Miyakoda*

1. Introduction

An iterative method for finding a root of analytic function f(2), real
valued on real axis, is described.

We comﬁ'ine Newton method and the cubic interpolatory iteration to im-
prove the former condition of the convergence, as stated below.

Let %, be an approximation of the root § of (2) and %C&) be cubic
Hermite interpolating polynomial of f@) on two points 72 and its complex
conjugate % . If % is sufficiently close to ¥ such that % satisfies the
convergence theorem of Newton iteration owing to OS‘trOWSkiD, then we have
Newton iteration. Otherwise we solve cubic polynomial equation %(2)= 0
and take a root ‘% of 3(2) nearest to %, as the next approximation of3’ .

Replacing % by 3 , we continue the way as before until the absolute
value of residual :f(Qo) is smaller than the error bound of the value of the
function at % .

As an example, we apply this algorithm to the polynomial with real co-
efficients. Our algorithm will be rather practical than usual one such as
Newton-Bairstow method.

2. Base of algorithm
Suppose given function f(lz) satisfies f(@) = T:(—g) on its domain. On an

arbitrary point % % ¥, we construct a cubic Hermite interpolating poly-

nomial:
4@=C B )+ (2-ra(fl - 212
+ B ) (o 5) () - g
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of which remainder is given by

a“

where 8 is a complex number such that [0]< | ands is some point belonging

V()= (2-%) (2~

to a convex hull of three points Z, %, Eo
For brevity, rewrite variable 2 to § such that
Z=Xo+ S , 2= x°+‘u3., , ‘4‘,0>O.
Then we have
ge)= g(L+s) = (s 45 (Yes+ ¥ )+ L5+ s
where real coefficients Yo ,Y,, Y2 and ¥j have expression:
Lfteo - o - S0 2H2]

o =

|
(2;:(19)‘
L =Tx‘q;“ { 5=~ a0

h=—sr 2“4 [§en-Ta

L5 + ﬁ)} ,

In case 7o is real number, these coefficients are defined by the limit
value approaching 13, to 0.

That is

glters)= §(x) + 515 + 52(”) Sh+ 5351’) 5

We consider first interpolatory iteration using this cubic polynomial.

If 3(2) is not identically constant, it has at least one root. By solv-
ing C}(’i) = 0, let 2, denote its root closest to & . If the initial value
2 is sufficiently close to"s a root of f(ﬂ), /2, is evidently more accu-
rate than % from the expression of remainder Y{2). By continuing this way‘
» We get a sequence {Q.,é which converges to 3 . We will call this method
cubic Hermite interpolatory iteration. In order to consider the speed of
convergence, we denote

fa)= f(§5+h)=

*
Qh | aQnko, m=z|

7-"’[\’ Is
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K 3
g2)=g(5rh) =C+Ch + G A+ Gh.
In cases is a complex root, by the definition of %(’3_), we get, with

somewhat complicated calculation, all the coefficients:
C= = ‘k )g {(’M l)%sa'mka +(’M‘f€40m+\ + 301/1){% Ll.o
2imlSH Tn(a) + 00 |

€= | AR+ OCK)

L (b 2R 1 O (R
=gy | P (G 2Rel@ ) + O )}

=gt R (0™ )+ O (RS

for sufficiently small {ho| .

Let k, be a root of %(S*—k)nearest to ho . Then we have

{% 21,,.\5(2 §k0+0(ho) m= |
o=
‘m-'h-\'O(hn) L m>1.

In case S is a real root, by denoting h -ge‘e , we have

°° % (R-3)smnlf-1)0 — (e-1)sin(fe-3)0

% § A sw*0
X A B (sin(k-2)0+sm(%-4)0 )~ 2(%-3)sinkB
= Z:‘ G S} ( 453
2 (Bo3)(sum (#1)0 +5im (R-1)0) =2 f sum(fe-3)0
=§“*$ VT R

L 23 - -
o ~ZO (k- 2)swﬁ2v:’e’ksw(& 2)0

Here, it is noteworthy that each Qk is a real number.

As the caseg is a complex root, h, is written by

G |p*+0(0) , M=
\%"\kolﬁo(k?) , m=2
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Wi+ 0 ()

, m=3

3
/fai
Qs
O(hs) , M=4
where the argument of quardatic root or cubic root of a real number is so
determined that f, is closest to ho .

Thus-, it concludes that the speed of convergence of this method is
fourth and second order for a simple real root and a complex root, re-
spectively.

Next, we consider the combination of Newton method and cubic Hermite in-
terpolatory iteration to reduce the computing time and to improve the con-
dition of the former convergence. As far as Newton method converges, we
will use this algorithm. In other case we have cubic Hermite interpolatory
iteration.

To select mechanically one of them in the iteration process, we note the
convergence theorem of Newton method.

Theorem (Ostrowskij>. Let f(%) be a complex function of complex varia-
bls %2 in a neighborhood of % , F(2Z)§(z) ¥ 0, o = -5(2)/§ (), 2= %
+lo . Consider the circle Ko : |€~’Zn\$lk°\, and assume 5(@) analytic in Ko
s ’MMKOH'/(Q)l =M and 1|h.|M.<_\f/(?a)l. Form, starting with %% , the

sequence 2, by the recurrence formula

3(%)
ZYH(: ’Z“—W , ('Yl:o,\,~~«< ) .

Then all %, lies in K, and we have
Zn—>T (m-r )
where v is the only zero in K, .

Since it is difficult to check mechanically these conditions for an
arbitrary analytic function f(@) except low degree polynomial, we test
whether these conditions are satisfied or not in each new step for the
cubic polynomial %(E). Moreover, if the circle K, of which center is not
on real axis intersects that line, we can not discriminate whether 2, is
real root of Q(Q) or complex root by the finite Newton iterates.

We use, therefore, a criterion for the selection between two algorithms

as follows.
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Let
Bn=dXn+AYn (Ynz0) |

Hzo5(2) >0

2l My | (20
IM(Z“+kn)>\tln\ > I‘MZV!>0

o= ‘5(’2“)/'f,(’2n)
Ma= 2101+ 6161 (g 20l )

If all conditions above are satisfied, we have Newton iterates one or

where

two times such that

ZL-‘- LlVl. IME‘A*O
QK-Q\ =

bt Y by
N 2 it %, mB=0

Otherwise, cubic Hermite interpolatory iteration has to be used.

Zn‘\"kn—

3. Application to the polynomial with real coefficients.

Suppose that a given function j{ﬁ) is a n-th order polynomial with real

coefficients:
JR)=@2"+ @™+ - +0n, Q%0
for which we can easily construct a Hermite %Etérpolating polynomial a@z)
at an arbitrdary point 2% and its complex conjugate %, .
Denote
E4+p2+q=(2-2)(2-%)
From recurrence formulas
b =00
b, =a.~F\7°
bew= Qe "Pbk - ‘Zbﬁ—\ o k=12, med
E;:= EM")&\D’\
C=b
Ci=b-pl
Ckﬂ = bﬁﬂ "PC“ - %CE" > ‘k-&" 2, ,M3
C:—s':' Cn-3
C:‘z = Cuz = % Ca-a

we get

R Ry= 'Xq*:&%o 5 %,ZO
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%(2) %(L"O)*\S*% )(CmS«“C“)»rb,_ s+‘“
$(2)= b,. +AY,
5:(25\):: [9“-‘ _2\'&: w3 t+ 2i%oCn.2

Hence, we can use the algorithm in the foregoing paragraph.

Next we consider the stopping criterion. In floating-point arithmetic
with 1 binary digits, we have

xRy )= (xRyIU+ED ,  [ele st
or =(19u5)/(l+£)
where R is one operation of +-X:.
Then the error bound & (2) of computed value 5(2) is determined by
g (2)=9qx2" L_ L1zl wh

This is sllghtly 51mp11f1ed but rough to Adams's formula). So we de-

termine the stopping rule:
| b+ iy, | < &(2)

For many examples this stopping rule has been efficiently operated. It
is desirable that a suitable condition number is defined for each éomputed
root to know the loss of significant digits of the approximate root.

Using the error bound §£,(2) and inequalities

Sihdlel™ 2(2f2)] | Twz=0
> (=) ., IwZ¥0

we can define a condition number for the root § such that

cond ()= Z‘b&"‘/!sf(g)\ =0 |
zz,\bmzt/l“si(m CTexo <ol

Evidently, cond(® S) zy.

Test results are shown in our original Japanese paper.
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