124
Detection of Outlines and their Use

in Hidden-Line Elimination

Kenji Kira*

Introduction

Lately we have developed an experimental computer animation system IMAGESB)(lnter-
active Montage and Animation Generating System), which generates a series of animated
plctures in three dimensional space and displays on a CRT. FEach object in the system
is a closed polyhedron surrounded with several polygons. A polyhedron may be concave
and may have some holes. In this system we have to calculate not only hidden-line-
eliminated perspective views of animated polyhedra but also all of their outlines,
with which several perspective views can be superimposed onto a background view if
wanted.

In this paper, the author desclibes an effective algorithm for outline detection
and hidden line elimination. In this algorithm, the detection of outlines of three
dimensional objects is regarded as an integral step in the hidden line elimination
procedure and the obtained outline data are made full use of in the following steps
of hidden line elimination. A new concept of "vertex condition in visibility" is
also proposed, which is usefull for checking up the visibility of the edge segments

connecting to a vertex quickly.

Input Data
The following three kinds of data are sufficient for outline detection as well
as hidden line elimination. Their contents are as follows.
Vertex Data; three dimensional coordinates Vi(Xi,Yi,zi).
Face Data ; a string of vertex numbers travelling clockwise around the face.

Edge Data. ; a couple of vertex numbers, a couple of face numbers intersecting from
both sides, and a flag that indicates the edge to be convex or concave.

But the edge data can be made automaticaly from the other two kinds of data, so the

vertex data and the face data are enough as actual input data.

Program Flow
The program flow is shown in Fig.l and the summaries of these steps are as
follows.
Initial Step; The edge data are developed from the vertex data and the face data.

Step 1 ; All the vertex coordinates in 3D space are calculated according to the
specified motions, and then all the face vectors are calculated to
classify the faces into front faces and back faces.

Step 2 ; All the edges are classified into four types(Hl,H2,H3,H4) as P.P.Loutrelz)

This paper first appeared in Japanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 14, No.3 (1973), pp. 188~ 195.
* NHK Technical Research Laboratories

125

suggested, and potentially
visible edges (H3,H4) are

data input
(vertex,face)

sellected.
Step 3 ; H3 edges' mutual [&;veloping edge data Initial Step
intersections are examined —
in the perspective view. calcu. of vertex coordinate§4J Step 1
and face vectors

Step 4 ; The outlines are

g;t:i$§d3from the results |se11ect10n of H3, H4 edges | Step 2
: H3 \nges
Step 5 ; The intersections calcu. of H3 edges’ Step 3
between H3 edges and H4 H4 edges mutual 1ntersect10ns
edges are examined. H3 edge
Step 6 3 ALL the segments Step 5 / r———g%IOUTLINE DETECTION || step 4

which are not evident yet calcu. of
to be visible or invisible intersections (“““““”‘”1
are finally examined, and ’ between H3 and H4 edges V.C. TABLE

the hidden line elimination Step 6

is completed.]Elnal vislblllty check r CRT or
In the program flow, I > PLOTTER

the most important parts

are the routine of outline Fig.l Program Flow

detection and the table of
"vertex condition in visibility" (V.C.). With these availabilities the processing
of Step 5 and Step 6 (especially the latter) has become much faster.

The points are as follows.

(1) As the outlines are composed of H3 edge segments only, the outlines are detected
after the calculation of H3 edges' mutual intersections. (Step 4)

(2) As the outline~composing segments cannot be boundaries where other edges are
partially hidden, the calculation of intersections between H3 edges, which compose
outlines along whole length, and all H4 edges can be omitted. (in Step 5)

(3) As the outline-composing segments are naturally visible, it is no longer
necessary to examine their visibility. (in Step b)

(4) After the outline detection, V.C. of all the vertices through which the detected
outlines pass are set visible. And in Step 6, the visibility checking of the
segments connecting to a vertex whose V.C. is already set can be accomplished only
by reffering V.C. table. Only in the case V.C. is not set yet, the check is made by
calculation, and the result (visible or invisible) is set in the table for the
following visibility checking of the other segments.

Vertex Condition in Visibility (V.C.)

Generally all the segments of H3 and H4 edges connecting to the same vertex are in
the same condition in visibility. Therefore, if one of them is known to be visible
(or invisible), the remainders can also be judged to be visible (or invisible). 1Imn
this paper we name the visible or invisible condition of each vertex "vertex condi-
tion in visibility" (V.C.). But there exist two exceptional types of vertices whose
V.C. must not be used, and we call them "peculiar vertices'". They require good
attentions and rather complicated processing in the outline detection procedure.

The contents of V.C. table are as follows.

unknown yet (remaining in initial condition)

visible (every segment connecting to the vertex can be judged to be visible.)
invisible (every segment conmecting to it can be judged to be invisible.)

. inavailable (peculiar vertex)

SN

126

Characteristics of Outlines

Some characteristics of outlines, which are
usefull for the outline detection procedure, are
derived from the example in Fig.2. The lines @) and
® are the outlines of the three objects. In Fig.2
(B), only H3 edges are indicated as vectors. The
direction of each vector is defined as the vector
looks the front face in right side.

(1) All the segments composing outlines are on
H3 edges only.

(2) The tips of these segments are on the
vertices or H3 edges' mutual intersections. It is
important that the intersections, hiding other
edges, are unessential for hidden line elimination
but essential for outline detection.

(8)

Fig.2 Detection of Outlines

(3) If there is no face surrounding a segment on the perspective view plane, that
is an outline segment. (necessary and sufficient condition to be outline segment)

(4) The closed circuit obtained by the rule, starting from one of the outline
segments, then travelling in the vector direction and changing to the new vector at

the vertices or intersections, is certainly outline.

Preparations for Qutline Detection
It is necessary to make some preparations for
outline detection.
(1) Table of H3 edges' sequence

This table is made by examining the sequence of H3
edges sellected in Step 3. 1In the outline detec-
tion procedure, the sellection of the following
segment via vertex is simply accomplished by
reffering this table.

(2) Table of H3 edges' mutual intersecions

The table such as list 1 is made in the process of
the calculation of H3 edges' mutual intersections
(Step 4). This example is related to the illustra-
tion in Fig.3. The contents of the table are as
follows.

1,2; coordinates (X,Y) of the intersection on the
perspective view plane.

3% ; the partner edge number of the intersection.

4% 3 the intersection number with which the inter-
section on the partner edge is found out.

5 ; the visibility condition in both sides.
"0" indicates evidently inbisible.

1:1*; the partner edge is partially hidden.
1:0 ; end point side of the own edge is
partially hidden.

start point side of the own edge is
partially hidden.

0:1

we

Among these contents, the number marked with * indicates

that they are necessary only for outline detection but

not for hidden line elimination.

edge 1
1-—-1Xp | Xq [-----
2----1Yp | Y¥Yq |----
3----[3 k |----
4= [Np | Nq [
5----11:1]11:0]----
edge j edge k
.- XP ______ Xq -———
—— Yp - ——— Yq -
el B N i [---
| Np [--- - Nq [---
-~-11:0]--- ---[T:7---
List 1 1Intersection
Table
k .
/,}
e
9

Fig.3 Intersections

127
In the table of H3 edges' mutual intersections, the segments, into which H3 edges
are devided at the intersections, are the "unit segments" which have possibilities

to compose the outlines.

Algorithm for Outline Detection
The outline segments can be picked up by examining whether each segment satisfies
the necessary and sufficient condition to be outline segment. But this way is not
so efficient in processing time, so in my algorithm all the closed circuits having
possibiligies to be outlines, are picked up first in the following manner.
(1) An optional segment remaining unsellected is sellected as a starting segment.

(2) The next segment sellection is made in the manner that if the former ends on a
vertex, the segment starting from the vertex is sellected by reffering the table of
H3 edges' sequence, and if the former ends on a intersection, the segment starting
there is sellected by reffering the table of H3 edges' mutual intersections.

(3) If the starting segment is re-sellected, it is known that a closed circuit has
been obtained. But if the circuit contains even partially the evidently invisible
segments, it is omitted as it can not be outline. (such as © and @ in Fig.2(B))

Like this way, some closed circuits, we call them potential outlines, can be
detected. (such as @ , ® and @ in Fig.2(B)) The potential outlines can not
always be outlines.

The outlines are finally picked up from the potential outlines in the following
way. An optional segment is sellected from each potential outline, and it is
examined whether the segment satisfies the necessary and sufficient condition to be
outline segment. If satisfies, the potential outline with the segment can be
judged to be outline. In Fig.2, only @ and ® are judged to be outlines.

By the way the outline (such as (® 1in Fig.2(B)) travelling arround in counter-

clockwise direction is an inner outline (hole).

Peculiar Vertices

Outlines formed with "rather simple" objects such as shown in Fig.2, are rather
simply detected by the predesclibed algorithm. The term "rather simple" means the
number of H3 edge vectors connecting to a vertex in the perspective view is at most
two, one coming in and the other going out. But there are some "rather complex"
objects which have some peculiar vertices. At the peculiar vertices more than two
H3 edge vectors start or end together. The outline detection of thése objects
requires exceptional treatments. The peculiar vertices can be classified into two
types.

(i) A type peculiar vertex; vertex where
more than two H3 edge vectors end.

Vertex p in Fig.4(b) is a simple P
example of this type. In the detection a b
of the potential outlines, if the segment
d (or ¢) is sellected as the starting T T
@ ® ©

segment, the circuit goes 4, ¢, e, b, ¢

and can not return to the starting Fig.4 Peculiar Vertices

segment, so the detection of the potential outlines ends in fail.

128

An adequate treatment of A type vertex is as follows.

If the segment which ends on this type vertex is sellected, the check whether
it really composes outline is done and if satisfied, the next segment is sellected.
If not satisfied, the circuit in process can not be outline, so from the new segment
remaining unsellected, the new circuit detection is started again.

(ii) B type peculiar vertex; vertex where more than two H3 edges start,

Fig.4(c) is the reverse of Fig.4(b), and the vertex ¢ is an example. In this
figure, although two segments # and d follow the segment ¢ , it is necessary to
sellect the segment 5 as the next of the segment ¢ . ¢

An adequate treatment of B type vertex is as follows.

At this typed vertex the most counterclockwise~directed segment against the
former segment is sellected.

These peculiar vertices can simply be found out in the establishing routine of the’
table of H3 edges' sequence.

By the way, it is evident in Fig.4 that the all the H3 and H4 edge segments
connecting to a peculiar vertex are not always in the same condition in visibility.
So V.C. of the peculiar vertex can not be used for checking up the visibilities of

the segments connecting to the vertex.

Availabilities of Outlines and Vertex Condition in Visibility
In Fig.5 the broken lines indicate the segments
which can be judged to be invisible from the result
of calculations of H3 edges' mutual intersections,

and the thick lines indicate the detected outlines

and they are evidently visible. P u

(1) All the V.C. of the vertices marked with © ! i m
can be set visible, through which the outlines
pass. (In this example no peculiar vertices
exist.) ¢ b

(2) Among sixteen H3 edges, nine edges which
compose outlines along the whole length, can not
intersect with every H4 edges, so their calcula-
tions in Step 5 can be omitted. a

(3) On the H3 edges (a, b, and ¢), tip points
of the outline-composing parts(thick lines) are hd i
on the intersections where other H3 edges are
partially hidden, so they can be judged to be Fig.5 Availability of
visible along whole length. Consequently V.C.of & Oziline andyV.C.
the vertices marked with o can be set visible.

(4) The segments (¢{~n) can be judged to be visible only by reffering V.C. table.
Therefore only one segment u in this example requires the calculations for visibili-
ty checking. But if at least one segment among the four (k~n) has been examined
before the segment u, V.C. of vertex (p or g) can be used for the segment u.

In this example, although this is a convenient one, the visibility checking in
Step 6 are almost accomplished only by setting and reffering the V.C. table.

129

Reduction of Computation Time

List 2 shows the improvement

on computation time. Each time y
in this list is an average
Total Step 6

computation time, rotating / Time
the sixteen faced objects ﬁ) z Zidinirz 3 sec. 2 sec

S— gorithm .
shown in Fig.6 twelve times /7 \‘\
by thirty degrees. 1In this . | N My 0.96sec. [0.1~0.2
example the coputation time Algorithm |(0.2sec.) sec.
of Step 6 (final visibility ()...time for outline detection
check of the segments) has Fig.6 Example of List 2 Reduction of
reduced beyond expectation polyhedra computation

to less than 10%, and as the time

result the total time including outline detection has reduced to about one third

compared with that by the ordinary algorithm only for hidden line elimination.

Time Estimation and Examples
The graph in Fig.7 shows the relations
between the number of the faces surrounding
the objects and the computation time of
hidden line elimination including outline

detection by my algorithm. In the graph, & 5
shows the results by FORTRAN and e by - Co
ASSEMBLER using IBM 360/40. Several ' Ba t
examples are shown in Fig.8. . '<nm‘u~>'Q£

A fo

3

Conclusion oWF e ST
Generally in the procedure of hidden line .§¢m [Guasemmien

elimination by a digital computer, the & y
visibility check of the segments, devided from 10 2‘0 5‘0 : slol;o‘ .1lou

the edges at the intersections on the perspec- Number of Faces —a

tive view plane, takes considerable time. This Fig.7 Computation Time
check is accomplished by examining whether each

segment is surrounded by any faces on the perspective view plane, and if so, which
is nearer to the view point in three dimensional space. This calculation is rather
complex and, what is more, the number of the combinations between the segments and
the faces is considerably great. So how to reduce the number of the combinations
directly leads to speeding up the hidden line elimination. In order to reduce

them several efforts as follows have been tried.

(1) The number of faces to be taken into account for the check has. been reduced
by examining the normal vector of each face and excepting back faces.

(2) The number of edges to be examined on their mutual intersections haé. been
reduced by classifying edges into four types and excepting evidently invisible edges.

130

(3) The number of segments to be checked in the final visibility check has been
reduced by examining which side of the intersection is hidden in the calculation
of intersections and excepting the evidently invisible segments.

In spite of these efforts, the final visibility check of the segments takes
considerable time yet. (See the first line of List 2.) In the development of a new
algorithm, I have considered how to speed up the hidden line eliminatiom, especially
the final visibility check, by using the outlines of which detection was necessary
for the system. And I have been struck with the new concept "'vertex condition in
visibility", which makes the detected outlines more effective for the hidden line
elimination. And the results seem to prove that my approach was not mistaken.

Although the necessity for outline detection is not so common, the algorithm
can be applied in the problem of shadowing. On the other hand the concept "vertex
condition in visibility" can be applied more broadly for speeding up the hidden line

elimination.

Fig. 8 Examples

References

1) I.E. Sutherland: Computer Graphics - Ten Unsolved Problems, Datamation. Vol.1l2,
No.5, pp. 22 ~ 27 (May 1966)

2) P.P. Loutrel : A Solution to the Hidden-Line Problem for Computer-Drawn
Polyhedra, IEEE Trans. Computers, Vol. C-19, pp. 205 ~ 213 (March 1970)

3) J. Kustuzawa, H. Yasuda, K. Kira and T. Omata : IMAGES - Interactive Montage
and Animation Generating System, NHK Laboratories Note, No. 168 (August 1973)

