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A Note on Interpolétion of Multivariable Functions

Kozo Ichida* and Takeshi Kiyono*

Abstract

The problem of numerical interpolation of multivariable functions,
when their values are assumed to be given on discrete lattice points,
has been solved by the Monte Carlo method, because the deterministic
method takes too much time to calculate interpolated values. This paper
describes a more stable algorifhm than that of [3] for nonlinear inter-

polation of multivariable functions.

1. Introduction

There are few books that treat numerical interpolation for more than
one variable. It is possible to express interpolation formula for
multivariables as a Cartesian product form of one variable, but the
number of terms increases exponentially with the number of Variables;
and even modern fast computers take too much time to calculate inter-
polated values. Consequently this problem has been solved by the Monte
Carlo method [1,2,3]. In nonlinéar interpolation there exist negative
coefficients, and the main difficulty in Monte Carlo sampling is how to
treat these coefficients that are regarded as negative probabilities
[4]. We may solve this problem by sorting out positive and negative
coefficients and sampling in proportion to their absolute values [3].
But this method loses accuracy as the number of variables increases. To
overcome this difficulty we provide a sampling method which combines
positive and negative coefficients. This scheme may be applied to other

problems for treating such negative probabilities.

2. Nonlinear Interpolation

Let f(xl,...,xk) be a multivariable function defined in a domain D
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of the k-dimensional Euclidean space. The problem is to estimate, by

interpolation, the values of the unknown function I at an arbitrary

point in D. The data are assumed to be given at the following % n,
rz1i

lattice points:

X, = X (1

L= x, D, x M) = 1,2,..0,0).

T
We use the following polynomial which holds exactly at the data points

[3].

ny T

£(Xp, 0 n0Xy) = ii;_lmihz“L(xl,..,xk;il,..~,ik)f(xl(11),..,xk(lk)), (1)
where
k
L(xps e oXpiipyeonigd = T L(Kp, 1) (2)

is the coefficient of k-dimensional Lagrange interpolation formula.
Simple sampling from the numerous terms of eq.(l) does not converge

easily on account of large variance [1,2]. So we rewrite eq.(l) as
f(xl"“’xk) =53 |L(x1"”xk;il’°"ik)‘ f(xl(li),--,xk(lk))
L0
5 Ly, eaxgsig, e e £ G0 g By )
L<o

The value of f may be estimated by the following equation:

E(Xy,eeesXy) = :ﬁrlgof(xl(il),..’xk(ik))

. L (i) (i)
e é%of(xl 1V, X k), (4)

where &£’ and L  are the sums of the positive and negative coefficients,

N'and N” are the numbers of terms in the summations of eq.(4).

3. Combined Sampling

The reason that we sort out terms as eq.(3) is that a simple
sampling from these terms of eq.(3) does not converge easily on account
of large variance due to negative coefficients. This sampling method
is indeed feasible. But Jf and Jf become very large as k increases.
Accordingly loss of significant figures increases by subtracting the
same order of large numbers.

Here we consider a sampling method which combines positive and

negative coefficients to avoid this difficulty. In one dimension the
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interpolation formula is expressed as

n n
f(X) = Z [L(x:jt)lf(Jt) - E IL(X)Jt)|f(Jt)’ (5)
t=1 : tmri
where f(jt) = f(x(jt)), and L(x,jt) is assumed to be positive for
1¢t¢m, negative for m+1¢ t<¢n. The coefficients satisfy the

following identity.
m n
L(x,j - L j = 1. 6
RN LICTE POTRENE A AC3% M) (6)
We rewrite eq.(5) into the following form.

£00 = L0571 - 2IL0x,d,,1)] 1£(i)
HILGG T, [2£G)) - £G5,,7)]
+ LIL0GG )] - 2110k, 5,1 T£G )
ST, (128G, = £G )] + ennns
HILOG I [2EGy ) - £G)] +ILeGIDNEG) . ()

In eq.(7), [IL0GI] - 21005, 1 1, GG, oen 5 [LGx,5)] are
nonnegative and their sum is unity by eq.(6). Regarding these
coefficients as probabilities, we can estimate the value of f(x) as the
mean value of f(jlj, [Zf(jl) - f(jm+1)]’ ey f(jm). In order to

express eq.(5) as eq.(7); the following equation must be satisfied:
m . s .
T L5072 X IL(x,i ). (8)
t=1 temes

Using eq.(6), eq.(8) becomes

[ ICRBIRES O
t=1

We perform the above procedure for each variable. There is no

subtraction of large numbers like eq.(4) and variance does not inflate

inordinately. But when we calculate the quantity 2f(...,xr.(1),...)
i

- f(...,xii(l),...) (= 26, - £y, for s variables xri(i=1,2,...,s) out

of k variables, it is necessary to calculate the following quantity.

, + f . L )
1++Tg Tye.Tg T Ty..T5 1Tg TiTg..Tg
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+ f ‘e (10)

.T
S

PR )+ (-1)SF,
T7..T5.1Ts ]

Zfr_- f,, is the point that divides f.. and £, externally with ratio
i i i i :

1:2 (also w in eq.(10) is understood to be such a point). It may be
considered that we calculate the numerical interpolation using such
external points. This circumstance resembles the extrapolation of

multivariable function [2}. Accordingly, the expression of standard
error that Hammersley gives in linear interpolation is applicable in

this case [2], namely if grad f is uniformly bounded, then

ES
z

6 < [(-F+ log K- (11)

is satisfied and 0 increases slowly with the number of dimensions.
Some numerical examples have been calculated with this algorithm

and the results support the utility of this method.
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