75
Quasi-sequential Grammars and their Parsing
Algorithms

Koichiro OCHIMIZU*, Masaharu MIZUMOTO*, Junichi TOYODA*,
Kohkichi TANAKA*

1. INTRODUCTION

A class of quasi-sequential grammars is defined and a parsing algorithm is given.
This class of grammars can describe the syntax of FORTRAN IV programming language di-
rectly.

When the syntax of FORTRAN I is represented by the form of the Chomsky's gener-
ative grammars, all variables can be ordered, Al’AE""’An and all productions can be
given either form of Ai+Aia where a&V¥ and o contains no Aj with j<i or Ai+6 where
BEV+ and B contains no Ay with j<i except for the cases of <primary>>(<arithmetic ex-
pression>), <logical primary>>(<logical expression>), <format specification list
group>H<format specification I>) and <Do index part>>(<I/0 variables list>, <Do index
part I>). Thus this grammar which we call regular-type sequential grammar generates
the regular set regarding <primary>, <logical primary>, <format specification list
group> and <Do index part> as the temporary terminal symbols.

Quasi-sequential grammars are defined as an extension of regular-type sequential
grammars by attaching the productions with self-embedding properties by a special
method described in this paper.

The parsing process for these grammars is executed as follows: The set of pro-
ductions is partitioned into ordered subsets, and scanning-reduction process is re-
peated k times where k is the number of the ordered subsets. At each step, only one
subset in the set of productions is used.

Quasi-sequential grammars are prcrosed as & model which is applicable to a com-
riler-compiler for the FORTRAN-type programming languages.

2. REGULAR-TYPE SEQUENTIAL GRAMMARS AND QUASI-SEQUENTIAIL GRAMMARS
Definition 1 1If a stringo includes a string B (i.e. B is a substring ofa), we de-

note it by 0DB. If o does not include B, we denote it by’axs.

This paper first appeared in Japanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 14, No.12 (1973), pp. 925~934.
* Department of Information and Computer Sciences, Faculty of Engineering Science, Osaka
University. Toyonaka, Osaka, Japan 560.

76

ae e, s 1 i
Definition 2) A context-free grammar G= (VN VT,P A) is said to be sequential if the

variables in VN,A1 L ,An can be ordered in such a way that if A{+@,&€V (v VﬁJVT)
is a production in p, then a?Aj with j<i.
Slightly modifying this grammar the concept of the grammar with rank(k) is intro-

duced in the next definition.

Definition 3 Let G=(V_,V_,P,A) be a context-free grammar such that variables in VN’

N>T 1
Al,A2,---,An, are ordered and each element in P is either
A.~A0, OKVE, oBA,, §<i cee (1)
i7i J =
or Ai+6,B€V+(=V-{g}), Bij, J<i ... (2)

we partition P into k subsets as follows:
_ (1) The productions whose left-hand side variables are Ai are collected and the set
of these productions is denoted by P(Ai).
Therefore P is divided into P(Al), P(Ae),---,P(An). Suppose that AC, is

h
the h~-th production in P(Ai) and C,. means the leftmost symbol of the right-hand side

ih
of the production and(Xih is its remaining part.
(2) For P(Ai)QP, a set Si is defined as follows:
sié{Ap)Aégaih, ALV, lshcm,} -+ (3)
where m, is the cardinality of P(Ai).
Every P(Ai) is collected by S, by the algorithm shown in (3).
(3) (i) Set i=l=m=1, 825, P(1)=¢.
(ii) 1If Ai+1§s then P(m)=P(m)UP(Ai), m=m+1l, P{m)=¢, I=1+1, S=SZ and go to (iii)
else P(m)=P(m)vP(Ai), 1=1+1, §=5U5, and go to (iii).
(iii) i=i+1 and if i<n then go co (ii) else P(m)=P(m)UP(Ai), set k=m and stop.
In this case, grammar G is said to be rank(k).
Proposition 1 P(i)nP(j)=¢ for all i¥j. P(1)uP(2WV.-.vP(k)=P.
Definition 4 Suppose a context-free grammar G=(VN VpoPshy) with rank(k) and this
grammar satisfying the conditions (1)~(L4), then G is said to be a regular-type se-
quéntial grammar with rank(k).

o+ . *
(1) For any AiGV , there exists Ai+m,(xtv and at least for a production, Ai TV

+
WEVT .

%
(2) There does not exist the pair of productions such that Ai+a, Ajﬁa, Ai¥Aj, €V .

(3) For any m, consider the Aj+a in P(m) and Q being a set of productions in P(m)

whose right-hand side string of satisfies a'>a. Then any sentential form @ which is

. 77
derived from A by using (P(1)uP(2)u- --up(m))-'({Ajm}uQ) satisfies BRo .

(4) There does not exist the pair of productions in P(i), such that Az+u, Ah+uv
where u, véV+.

Definition 5 A quasi-sequential grammar G'=(VN',VT',P',A1) with rank(k+l) is defined
“as follows. Suppose G=(VN,VT,P,A1) being a regular-type sequential grammar with
rank(k) and satisfying the conditions that there exist Ai ,Ai "."Aii’AjevN (i.<3,

. % 1t r =
St eee i <5 s - <3). i i
1,53, ’lr=J) and A % Aj for AZ&VN(Z j). A production AjﬂxlAiixeAiz «xrAi;xr+ng
to be attached is split into productions such as
Ae_ A a A -0 A o
J L a; 2 4 rq, r+l
. co ()
A +FAA LA A A ,ece,A »bA A
4 l—i,qz 12’ ’ Ty
cee % cen s s : initi
where 0,0, D€V, Ajﬁulaz 0.0, satisfies the (1) or (2) in definition 3 and

F;{QVT. qr=qr_l+l,--o,q2=ql+l and ql is by one larger than the greatest subscript

of variables in VN. We construct VN', VT' and P' as follows.
v'=v_ {A ,ee,a)}, v or=v_ui{kd}, P'=Pu{A. 0 A o - A o JU{A opAA .-,
+
N N q. a4, T 371 9 2 raq, r+l 9 i,
A *FAi4 }. Then G'=(VN',V ',P',Al) is a quasi-sequential grammar with rank(k+1).
r -

.o 3 i can 13
Remark that AjfulAq£12 urAq;1r+l is added to P(Aj) and {Aql++Aii , ,Aqr+fAi: } is

T

added to P(0).
Proposition 2 A regular-type sequential grammar generates a regular set.
3. PARSING ALGORITHMS FOR QUASI-SEQUENTIAL GRAMMARS
In this section, a parsing algorithm for quasi-sequential grammars is given.
Various sorts of parsers have been proposed for context-free grammars such as
top-down analyzer and bottom-up analyzer, LR(k) parser for LR(k) grammars, the parser
for precedence grammars, bounded context analyzer. Our parsing algorithm is more sim-
plelthan any others. For the regular-type sequential grammars, a set of reductions
R=R(1)UR(2)v-+-yR(k) (i.e. the rule which is obtained by changing the right-hand side
and left-hand side of a production) are constructed corresponding to the set of pro-
ductions P=P(1L)UP(2)y-:-UP(k) and, at first, an input terminal string is scanned and
reduced from left to right by using only R(k) without looking-ahead symbols and back-
tracking. The result string from R(k) is analyzed in the same way as in R(k) by using
R(k-1). This procedure is repeated by k times. If a parse is finished by using R(1)
and the start symbol Al is finally obtained, the parse successes and in other cases

the parse fails.

¥
*otﬁc?s means o does not derive B.by G.

78

For quasi-sequential grammars with rank(k+1), substrings generated by self-

embedding rules are enclosed by F and«* and then a procedure is related to that part
is added. In more detail, the parsing algorithm for a quasi-sequential grammar con-
sists of two phases. One is to recognize the pair of symbols } and~ , the another is
the same as the parsing algorithm for regular-type sequential agrammars.

(1) Suppose a production A LAjHizj) being added to the grammar,‘the parser scan-

men

ning a input terminal string from left to right until the first 4 is found. If it
is found, from that point to the left, a scanning pointer is moved until the first "}
is found. The string which is consisted of the pair of k~and1 founded and the string
bracketed by them is analyzed by the parsing algorithm for regular-type sequential
grammars including }-and~1. Then the substring including}. and —\is replaced by Ai.
(2) By the same algorithlm as mentioned in (1), the innermost pair of symbols |- and
is found in the resulting string and the substring including them is reduced. Finally
if the sentential form does not include the pairs of symbols }-and{ , then the senten-
tial form is analyzed by the algorithm for the regular-type sequential grammars and
the parsing is finished.
Theorem The parsing algorithm for regular-type sequential grammars 1s deterministic
and the parsing algorithm for quasi-sequential grammars is also deterministic.

A construction method of tables used by the parsing algorithm is shown in the
following section.
3.1 fransformation of the representation of reductions.

The reductions are transformed as follows: (1) For R(1), if there is a common
prefix among the left-hand sides of the reductions, the these reductions with the pre-

fix are combined by bracketing the prefix (i.e. alB+Ai,alB‘+A 4116"9A become

J k
al[B+Ai|B'+Aj[B"+Ak]). This algorithm is repeatedly executed until every common pre-
fixes are united. (2) The same algorithm as (1) is executed to R(2),R(3),---,R(k).
Example 1 {oalBlocl+Al,otlBlY2—> 0y BoA o0 A, BoAL } becomes {o) [B [y~ l|y2 o]B3 A3],
o)A, B+A5}
3.2 Symbol tables, syntax tables and rank tables

The construction method of the tables is shown with reffering to the table 1 as
an example. Suppose the same fofms of the reductions as in 3.1.
(1) At first, every table of R(1) is made (for quasi-sequential grammars, of R(0)).

(symbol table) The SI column of the symbol table is filled with the leftmost symbol

79

of the left-hand side of a reduction. If the left-hand side of the reduction consists
of only one symbol then the LI column of that row is filled with a zero and the RI
column is filled by the right-hand side of the reduction. In other case, remaining
symbols of the left-hand side of the reductions sequentially fill in the SII column of
the syntax table. In that case, the LI column of the symbol table is filled with the
row number of the syntax table where the f“irst symbol of the remaining symbols is
placed and the RI column is filled with a zero.

(syntax table) The M column is filled with the symbol "k" if the content of the SII
column is the immediate left-hand side symbol of "-+" and in that case the RII column

is filled with the immediate right-hand side of the "»". If the content of the SIT

column is the immediate right-hand side of "[", the ALT column of that row is filled

with the row number in which the immediate right-hand side symbol of "|" is placed.
However if there exists "[" before "|" then the ALT column is filled with the row num-
ber which contains the immediate right-hand side symbol of "|" which appears just
after the corresponding bracket "]". Furthermore if "|"s occur in the pair of "[" and

"]", the ALT column of the row which contains the immediate right-hand side symbol of

the (i-1)-th "|" is filled with the row number which contains the immediate right-hand
side symbol of the i-th "I"b. All other spaces are filled with zeros.

(rank table) Ll is filled with the maximum row number of the symbol table.

(2) By the same algorithm as (1), the tables for R(2),R(3),"--,R(k) are ‘sequentially,
made, and ‘the tables for R(i) are attached under’ the tables for R(i-1) according to
the type of tables.

Now we explain the meanings of tables.. The maximum value of the subscript i of

—_— PR e e L. shows the rank number of the
, | su | M jacT|rn |u | 1 Lo | Lo | Lo fo] Le i
N SO A zsix . 0 | 3 frefredie grammar. -In the i-th reduction
o Ty P Lo 4 rank table
Wl | EyB) | D [t : ‘\ i process, we use the part of the
H : oo ; i
i | |] RN 1 tabie o .
A o | st S 0 able whose row numbers
l?l H;m : 131 i symbol table v
li’l :(7‘) !; A aré given by the content of
) S ! H (): the leftmost symbol of a
Lol oTey| & A, string O L-i+k+1 (k is rank number) and
Lt G | 0 ? Hg(a): the direct right-hand side
Lo| T | K As of Hl(OL) the content of L-i+k plus one.
Il | Hyfa) | 0 o s
‘ : : H T{x): the rightmost symbol of a .
W | T | & i) . & v The LI column is filled with the
N o o 0‘ string o

' i i number of the row in which the

syntax table Table 1 The symbol table, the syntax table and

the rank table for example 1 next symbol to be CC{mPaf‘ed is

80

placed. If the content of the LI column equals to zero, it means that the content of
the LI column is to be reduced to the content of the RI column. The content of the M
column of the syntax table indicates the next action (i.e. if it is zero, the scanning
pointer moves to right by one and if it is "k", the matched substring is reduced to
the content of the RI column in that row. The content of the ALT column shows the
number of the row to be compared alternatively when the symbol indicated by the scan-
ning pointer does not match with the content of the SII column. The symbol table, the
syntax table and the rank table for example 1 are shown in table 1.
4. DESCRIPTION OF FORTRAN I BY QUASI-SEQUENTIAL GRAMMARS.

The syntax of FORTRAN IV is described by a grammar with rank(26) by regarding
<primary>, <logical primary>, <format specification list group> and <Do index part>
as temporary terminal symbols. However it is not a regular-type sequential grammar
with rank(26) because there exist pairs of productions that violate the conditions in
definition 4. It is mainly caused by the existence of the indistinguishable terminal
symbols which cause a parse to be non-deterministic and back-tracked. We have proved
that these terminal symbols can be identified by lexical analysis. Then on the as-
sumption of this fact; the syntax of FORTRAN N is described by a regular-type se-
quential grammar with rank(26). Furthermore it can be described by a guasi-sequential
grammar with rank(27) by attaching productions with self-embedding properties. The
pair of | and-| is inserted into a FORTRAN source program by lexical analysis before
a parse is executed. More detailed explanation is omitted owing to limited space.
5. CONCLUSION

It is shown that the syntax of FORTRAN IV can be described by a quasi-sequential
grammar with rank(27). The features of the parsing algorithm of this grammar are
that the parsing process is devided into 27-phase, in each phase, only one subset of
the set of reductions is used and scanning-reduction process is deterministic and
without back-tracking and looking-ahead symbols.

REFERENCES

1) J.E.Hopcroft and J.D.Ullman: Formal languages and their Relation to Automata,

Addison-Wesley, Reading, Mass, 1969.

