69
HITAC 8700/8800 Operating System (0S7)

Isao Ohnishi, Hidehiko Akita, Shingi Domen and Kazumasa Kaneko

1. Introduction)

OS7 is a general-purpose commercial base operating system incor-
porating multiple virtual spaces and multiprocessing modes up to 4 CPUs.,

OS7 enables each processor of the system to operate in a symmetric
mode or jointly with the other models in a non-symmetric mode.

It is designed to support closed batch, open batch, remote batch, time
sharing (interactive) and real time processing simultaneously under the
single installed operating system.

The same command languages (JCL) are used commonly to describe
jobs among the 5 types of processings.

The file subsystem such as the structure, catalogue designs, and file
access methods are identical and common among these processings, thus
the user at the TSS terminal can manipulate data created in a batch
processing.

2. Main features
2.1 Virtual memory

2,1.1 Virtual space organization

Virtual spaces in OS7 has the organization shown in Fig, 1.

Address 0~M-1 is the system space and is used commonly by
all users, while M~231-1 is the user space and is given in each
user job.

Each user has the same beginning address M in the virtual, in
spite of the different address in the real space (multi-virtual space),
Therefore the address translation table (shown in Fig,2) is
given for each user, and the user space never be overlapped with

the others.

The multiplicity of the job is infinite in design and the available
address space for each user is 231 pytes.

Besides, a ring memory protection mechanism is implemented
in hardware on which all segments are classified into 7 rings and
the program in the lower ring area cannot write the data on the
upper ring.

Rings 0~3 are used by the control program, ring 4 is for compil-
ers and utility programs, and ring 5v6 are assigned to user pro-
grams which are available for making hierarchial codings.

The ring mechanism has made it easy to locate the illogical
system bugs during the development phase of OS itself,

This paper first appeared in Japanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 14, No.10 (1973), pp. 769~777.

70

s | Task B’s BT
—_— . e
1 ring system 4
Address 0 Control programs 0 Ny space |
ST for A’s I ST for
1 Lu:.m- space \\B's user space
tem s 7
Work area for control programs ; system space B
0 .
Compilers, Utility programs 4 | b1
\\ PT PT
5 N
Address M
Job 1 Job 2 Job n 6 user space
(Task 1) | (Task 2) (Task n)
Fig. 1 Virtual space organization in OS7 always 0= - o oy pi
] - = 32 Bit
Segment
Fig. 2 Address translation tables and virtual
address format
2.1,2 Memory scheduling implementation

(

In OS7 memory requirements are generally notified by mapping
fault interruptions.

If there is enough unused main storage then the page issuing the
mapping fault is allocated immediately, otherwise a proper page in
the main storage has to be swapped out on to the auxiliarly memory
to give the main memory to the page.

On the memory scheduling the "algorithm to select pages to be
swapped out' is the most fundamental policy to increase perfor-
mance and reduce response time,

The purpose of finding the optimal replacement algorithm is
supposed to minimize the number of page faults,

In general the best '"unrealizable' algorithm is 'to select and
swap out pages to be referred to in the most far future''.

However it is impossible only to predict which is referred to
in the nearest future,

The Least Recently Used (LRU) algorithm, in which the page
referred to the least recently is swapped out is based on the
assumption that the page referred to in the least recently will not
be referred to in the nearest future,

The strict LRU rule is also very difficult to be implemented, so
that the scheduling algorithm of OS7 is classified as the First In
Not Used First Out (FINUFO) policy in which the unused page not
referred to in the interval is swapped out first,

The FINUFO policy is realized as follows:

(i) Each page on the main storage has R (Refer) bit and C (change)
bit,
Initially R and C are zeros,
If the page is referred to then R=1, If the page is changed
then C = 1 (in hardware).

ii) There is a pointer to the pages which may be swapped out
(ring list),

(iii) If it becomes neccessary to swap out a page, R bit of the

pointed page is tested.
If R = 0, the page is swapped out, If R =1, then after R is
changed to zero the pointer is updated to the next page.

(iv) After a page is selected to be swapped out, its C bit is

examined.

If C = 0, and the same image is on the drum, then the page is
skipped and not to be copied on the drum, Otherwise it is
always copied.,

71

The selection of a ring list is applied in OS7 as follows (local policy):
(1) Either the 'system space'or the 'user space'is selected depending on

the less of the number of the mapping fault/page in seconds.
(2) If the 'user space' is selected, then a user job is found. The user job
should be swapped out based on the following criterion:-

Job's current memory size should be within the user declared space
limit, which is defined for each job class at system generation.

When the multiplicity of tasks is too heavy, because of insufficient
stabilizing mechanism in the attached job function, the number of swapping-
in/out may increase excessively (thrashing),

When the phenomenon of the thrashing is detected by the probe, the
control program makes a certain task inactive (roll-out).

Fig. 3 First In Not Used First Out (FINUFO)
Algoritnm

2,2 Multiprocessing

2.2,1 Locks

In a multiprocessing environment, the same code of control
program is concurrently executed by several CPUs.

To prevent one CPU from referring or updating control infor-
mation while other CPU is updating it, the synchronization among
CPUs is necessary.

The simplest method is to introduce a single lock which seriali-
zes the execution of the kernel part of control program in which
external interruption or mapping fault is inhibited,

But a single lock may become a performance bottleneck when
heavy services are necessary.

In OS7, in order to minimize the loss time due to waiting for a
lock to be released, more than 50 locks are allocated,

To prevent deadlocks, all the resources are designed to be
locked in the same sequence,

2.2,2 Task Scheduling

OS7 has two types of task scheduling algorithms, one of them
is selected at system generation time. This is simple priority
scheduling algorithm based on task priority. The other is the
algorithm based on task types as well as task priority,

There is one ready task queue for each task type - system task,
real time task, TSS task and batch task, The scheduling priority of
each task type is normally in the order described above - system
task has the highest priority and batch task has the lowest priority.
Among tasks with the same task type, each task's priority is used
for scheduling.

In this algorithm, task type priorities for TSS task and batch
task are determined by the CPU serviced - time ratio, When TSS
tasks have spent more CPU time than the ratio which is specified
at system generation time, batch tasks will have the higher priority
than TSS tasks.

72

In both scheduling algorithms, time-slicing feature is available.

For n CPU, there is a set of ready task queues and n tasks with the

highest priority are selected and executed, In the multiprocessing

environment, one CPU informs other CPUs by means of direct
control in the following procedure:-

(i) When a task becomes ready in one CPU, there is some other
CPU which is in the idle state.

(ii) When a task becomes ready in one CPU, there is some other
CPU executing a task whose priority is lower than that of the
new ready task.

The CPU, which has received the direct control signal, will
switch to an appropriate task.

Multiprocessing with different models of processors
Multiprocessor configuration containing both H-8800 and H-8700
is supported.

(i) H-8800 is much more powerful than H-8700 on arithmetic
operations rather than logical operations, memory to memory
operations and I/O operations., Therefore, in the 8700-8800
multiprocessing system, task scheduler is designed to execute
user tasks preferentially on H-8800 and system tasks on
H-8700,

(ii) H-8800 doesnotbecome idle when H-8700 is executing a task.
When H-8800 is in idle, H-8800 takes over the task which
H-8700 is executing,

(iii) It is possible to make all I/O operations to be performed only
by H-8700,

(iv) For a job which must be processed with the shortest turn-
around time, one can utilize an express task which has the
highest priority and is processed only by H-8800.

Performance of Multiprocessing
Performance of multiprocessor system, as compared with single
processor system, is affected by the following factors.

(i) In multiprocessor system, system resources can be utilized
more efficiently. This improves the total throughput of the
system,

(ii) Effect of sharing programs becomes prominent, Only one
copy of control programs and other systems programs have
to reside in memory. One can save main memory space and
reduce swapping overhead.

(iii) Average main memory access time becomes longer due to the
conflict of main memory access by CPUs,

(iv) There is some delay due to the locks of serially reusable
resources,

The magnitude of the effect of these factors varies depending on
the characteristics of user programs and environments,

Table 1 shows the performance of multi-processor system measured

on FORTRAN (compile, link and go) bench-mark jobs in October

1973,

Table 1 Throughput of multi-processing on OS 7
(Measured on 20 FORTRAN programs)

1

No. | Configuration Thrupt Ratio {CPU Time Ratio
1 8,700x1,1 MB Memory 1 (0.8) 1
2 8,700x1,2MB Memory L2 () 1
3 8,700% 2,2 MB Memory 2.3 (1.84) L1

73

2,3 PROGRAM SHARING

2.3.2

Reentrant program
A program must be reentrant if it is to be shared. In OS7 user
can write a reentrant program easily by using PSECT (Private
Section) and COPY macro in addition to hardware stack features.
User can define constants and work areas in PSECT and get a copy
of PSECT for each task, issuing COPY macro. Complilers
(FORTRAN, COBOL and PL/I) can produce reentrant object codes,
if so specified.,

on real on virtual
memory address spac

on main memory }l{ ~— -1 R
$1-— g1

LS-—\’”N‘AL I #5 NP
\J \953

Fig. 4 Overlay structure in real memory
system

Fig. 5 Logical overlay structure in virtual
memory system
Logical overlay structure
Very large programs such as compilers have had overlay

structure in conventional real memory systems., In virtual memory
system, one can execute a very large program without overlay
structure, But if programmer notifies that these pages will not be
used any longer, the control program can schedule main memory
better. On the other hand, if a program has overlay structure, it
cannot be shared between users at the same time. Therefore, we
have introduced the concept of logical overlay structure in OS7,

Fig. 4 shows the example using overlay structure in real memory
system, Fig. 5 shows the same example using logical overlay
structure, In Fig., 5, every load module (R, #1, 42, 43, 44, 45) is
given different virtual addresses.

Task Tl, T2 and T3 are now executing in g3 and 1. Whenever
a task tries to link a load module, link fault occurs, Thus the
control program always knows which tasks are executing in the load
module. The load modules, which are being used at least by one
task, are tried to keep in main memory, The load modules, which
are not being used by any task, are swapped out,

Conclusion

Octo

OS7 was installed and operated at TOKYO Institute of Technology in
ber of 1972 as the first version incorporating single processor

system.

oper

The 2nd version which supports multiprocessor system started its
ation at TOKYO University Computer Center in January of 1973,
The system consists of 2-8800 CPUs and 2-8700 CPUs, It supports

the services, open batch, closed batch, TSS, and remote batch processing.

As we are still tuning up software, the total throughput may improve

in the future.

74
Acknowledgement
In the end we express our gratitude to the staffs in the center of the
University of TOKYO and TOKYO Institute of Technology for the proper
suggestions or advices from the user point of view.

REFERENCES

1 K. Nakazawa et al, The development of the high speed national
project computer system, the lst, USA-JAPAN Computer
Conference Proceedings, October 1972, 173-181,

2 I. Ohnishi et al, Command Languages in OS7, Proceedings of the
IFIP Working Conference on Command Languages, July 1974,

3 S. Domen et al, HITAC 8700 Operating System, HITACHI HYORON,
Vol, 54 (1972).

4 P. J. Denning, Virtual Memory, Computing Surveys, Vol, 2, No.3
September 1973,)

