103

Design and Implementation of an Interactive

Diagnostic PL/I System

Kenichi Harada® and Marvin V. Zelkowitz**

Abstract

Typically programs in a university environment are written, debugged, executed,
and then discarded. Most of their time is spent in the debugging phase of program
development. Therefore, in order to optimize system resources, a compiler is needed
which is designed to execute programs quickly, and to produce detailed diagnostic
messages.

PLUM is an interactive diagnostic PL/I system which has been developed at the
University of Maryland for the Univac 1100 series computer. It compiles source

programs directly into machine language and immediately executes them.

1. 1Introuction
In a university environment, especially in programming practice at computer

science education, it can be observed that the programs are relatively small and

the execution time is short. Furthermore, they often contain various trivial errors,
and the number of programs submitted to run is very large. Then, a system is needed
which is intended to run such programs as faster as possible rather than to produce
highly optimized code. Powerful diagnostic facilities are also required. This type
of compiler is useful as a diagnostic tool for checking out production programs.

PLUM is an interactive diagnostic PL/I system which has been designed to run in time-

sharing mode under the EXEC 8 operating system for Univac 1100 series computer.

2. Design Criteria
Before starting of the design and implementation of PLUM, the following assump-
tions were made on the environment of the system and the purspose of the use.

(1) The most of users are beginners in computer programming.

(2) The average program consists of 50 to 200 statements.

(3) Most computer time is spent in diagnostic phase of program development, i.e.
correction of a source program, and recompilation and execution of the program. The
execution time is too short.

(4) When a program is completed, it would be descarded.

(5) This system is mainly used in time-sharing mode through demand terminals.

From these assumptions, the characteristics of PLUM were decided as follows.

This paper first appeared in Japanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 16, No.2 (1975), pp. 85~92.

* Keio Institute of Information Science, Keio University
** Department of Computer Science, University of Maryland

104

(1)
ately executes the program(PLUM
on an 1108). No link edit step

(2) The compiler generates

compiles about 10,000 average statements per minute
is necessary.

detailed diagnostic messages.

(3) The compiler is designed around an error correcting philosophy that has
been successfully employed on other compiler[l). This means that given an error
condition, the compiler will modify the source program in order to do more debugging
than a student getting no output.

(4) The system has extensive data collection facifities for monitoring program

behavior.

3.
PLUM accepts a significant subset of the PL/I language(2,3].

Language

All arithmetic data
types are accepted. That is, arithmetic data can be real or complex and can have
the attributes: fixed binary, fixed decimal, float binary and float decimal. Up to
18 digits of precision are allowed for decimal arithmetic. String data can be either
character or bit. Strings can have fixed lengths or can be varying length.
Usingrthe primitive data types, aggregate data types can be declared. Arrays may
be declared with arbitrary bounds and arbitrary dimensionality. Static and automatic
storage classes can be defined on such data.

PLUM implements most PL/I statements. This includes the following statements:

Assignement BEGIN CALL CLOSE DECLARE
DO END ENTRY FORMAT GET
GOTO IF OPEN PROCEDURE PUT
RETURN STOP

and the special debugging statements which are described later:
SIGNAL FLOW NOFLOW
The statements which have not as yet been implemented include record oriented 1/0,

ON conditions and statements concerning pointer variables.

4. Diagnostic Facilities
Most of PLUM's usefulness stems from its diagnostic capability. Diagnostic infor-
mation can be divided into two classes: automatic diagnostic aids and programmer
controlled diagnostic aids.
4.1 Automatic Diagnostic Aids
This class of diagnostic information is always active during execution of a PLUM
program. Some of these a user can disable in order to increase his execution speed
slightly.
(1) Error correcting compiler: Whenever the compiler finds an error it will
correct it before continuing. Fig. 1 is an example of such an output.
(2) Use of reserved words: Certain words like GET, PUT and DO are classified
as reserved words and may be used by the user as a variable names. This enables to
error correcting facility to determine a program's state should a syntax error occur.

(3) Subscript checking: All array references are checked for validity.

105

1 1P PRIC JPTIANSCMAINY 3
(4) Parameter matching: #ss IN 1 ERROR SY 64 MISSING CALAN
CARRECTED: P 1 PRIC APTIANS ¢ MAIN))
e e DCL (N,AC109)) FIXKED BINARY (35,00 §
set IN 2 ERROR SY 84 EXTRA)
CORRECTEDT DECLARE ¢ N » A € 10)) FIXED BINARY ¢ 35 »

All arguments to a procedure

are compared with their corres- 0 3
3 3 FINDMAX t PRIC CAsN
ponding formal parameters for #4¢ IN 3 ERRIR SY 27 MISSING CIMMA
#es IN 3 ERROR SY 30 MISSING RIGHT PARENTAESIS
#ss IN 3 ERRIR SY 47 MISSING SEMICALIN
validity. CORRECTED: FINDMAX t PRIC € A, N) 3
. . 4 DCL CAC*),N,MAX) FIXED BINARY (35 0) »
(5) Execution profiles: s s MAX=0 +
=% IN S ERROGR SY 25 INCIMPLETE EXPRESSIIN
i 5 s _ #e¢ IN 5 ERRIR SY 47 MISSING SEMICOLIN
This option produces a histo CORRECTEDS MAX = 0 3

gram giving the frequence of exe- Fig.1 AnE le of Di ic Messag

cution of each statement in the program[4]. This facilitates debugging since it
shows which statements may never have been executed, and which procedures are used
frequently, and should be optimized.

(6) Conditional code generation: The sequence /*D text */ is normally inter-
preted as a PL/I comment. However, with a certain option specified, the /*D will be
ignored, and text will be interpreted as part of the program. Thus the user could
place debugging code as a permanent part of his program. Should an error occur, he
could simply specify this option, rerun the program, and produce any desired diag-
nostic information.

4.2 Programmer Controlled Diagnostic Aids
should an error occur during execution of a PLUM program, if the user is executing
from a demand terminal an interactive debugging routine will be activated. The user

has the following options(Fig. 2):

(1) Any variable name can be command function
rmi ALTER v = ¢ 1 The variable r is assigned the constant value o,
typed at the te nal' and its BREAKPOINT 2(D] | If statement number » is specified, then it be-
comes a breakpoint. Once 4, then 1
value will be printed- will return to the diagnostiec routine. If D is
also specified, then the breakpoint at statement
(2) A PL/I procedure can be a will be deleted.
CALL p This causes the parameterless procedure p to be
called from the terminal. For called. Upon completion, control will return to
the diagnostic routine. o
DISPLAY v The variable vr's current value will be printed.
exa'mple' a user could have diffe- EXECUTE The execution phase of the program will be redone
. without recompiling the program.
rent error routines. Should FLOW The flow statement trace will be turned on.
GOTO I Execution resumes at the label :.
an error occur, the user could HELP A listing of all commands is printed.
INFORMATION a Information about the command & will be printed.
call the appropriate routine to LABEL A list of the last 18 GOTO statements executed is
printed.
NOPLOW The flow trace is turned off.
take corrective action. It is RETURN Execution resumes at the point of error.
N STOP Execution is terminated.
this feature, along with the TIME Elapsed memory time since the start of execution
or since the last TIME command is printed.
ability of displaying values UPDATE The University of Maryland Text Editor ie called
and the source program can be edited. Upon return
i from the editor the program is recompiled without
symbolically, that obviates the e eoe Tisting.
WALKBACK The names of all currently active procedures will
need for the ON condition. be printed. The location where ‘each of these

procedures was called will also be printed.

(3) Breakpoints can be set.

* Only the first character of each command is necessary.

Thus the user can specify when Fig. 2 List of Interactive Debugging Command

the program is to return control
to the terminal. Execution of the program may then be resumed at either the point of
error, or to any other label in the program. In order to invoke the interactive
routines from a program the special statement SIGNAL ERROR; can be used.

(4) Trace routines can be turned on and off interactively. A statement trace can

also be stated via the statement FLOW; from a PLUM program.

106

5. Compiler Organization

PLUM executes as a multisegmented program in the instruction bank of the 1108.
A root segment is always present while each compilation and execution phase overlays
the previous phase in memory. Passes 1 and 2 constitute syntax analysis and semantic
analysis are contained in one phase; the cross reference listing is a second phase;
code generation is a third and execution is a fourth phase(5].

5.1 General Data Flow through P

In order to minimize I/O calls, all data is core resident. This means that the
symbol table is always resident as well as the parsed program after syntax analysis
and the object code after code generation. The organization of the workspace called
PLUM common area during each phase is as shown in Fig. 3.

During pass 1, the source program is read and the symbol table is constructed for
each identifier. The symbol table starts immediately after the hash table in memory.

Pass 1 also constructs an internal form of the

0|

. Full Word Working St
program. This internal form starts halfway 800 L Tord Morking lorege

Hash Table and Half Word Storage

down in the workspace. By the end of pass 1 200
Symbol Table (BCD and SD)
both the symbol table and internal source program

7-Code Machine Code
size are fixed. Pass 2 does not chang the S0 - Code %ﬁﬁ“
Y
size or location of either the symbol table or W op{::fd/» - Code &2\53&0;
the source program table. Just prior to code 10000 Stack

Syntax Semantic Code Execution
Analysis Analysis Generation

generation the internal source program called
Fig. 3 PLUM Common Area

Gamma code is moved to the end of the workspace.

This frees up the largest block of memory possible between the end of the symbol
table and the start of the Gamma code. As the Gamma code is scanned, the object
code is placed in this freed block. Once code is generated for a statement, the
space it took in the Gamma code is released. Finally, after code generation, the
remainder of the workspace served as the run-time stack for the executing PL/I
program.

5.2 Syntax Analysis

Syntax analysis consits of lexical scanner, syntax analyzer, and expression
analyzer. A lexical scanner reads in the source program and converts the program
into a stream of tokens called Alpha code. Each Alpha code is contained within a
lexical class, also associated with the token. The parsing algorithm uses one token
lookahead where the parser is parsing token (n) while the scanner has already found
token (n+l). This one token lookahead helps resolve some ambiguous decisions for the
parser.

Syntax analyzer calls appropriate driver that sets up a tree for each statement
type. Since the leaves of the tree are ususally expressions, an expression analyzer
is called to parse expressions.

The expression analyzer is passed a code giving the context of the expression.

The entire expression is converted to Beta code and attached to the tree. The expre-

ssion analyzer then returns to the syntax analyzer for processing of the next phrase.

107

5.3 Semantic Analysis

Semantic analysis resolves name pointers in the Beta code into symbol table add-
resses. Semantic analysis looks for start expression indicators in the Beta code.
When an expression is scanned, semantic analysis knows which blocks are currently
active, and can therefore resolve name pointers to the appropriate symbol table
entry according to the proper scope rules of PL/I.

Semantic analysis also checks expressions for validity. Associated with each ex-
pression in the expression type giving the context in which it is used. Using this
token the context of the expression is checked, and if invalid, a default expression
is used for it. The validity checking also includes checking arguments to function
with the defined attributes of the parameters of the function.

Finally, since the code generator is stack oriented, semantic analysis will con-
vert the expression to polish postfix for ease in generating code.

5.4 Code Generation

The Code generation techniques used in PLUM are similar to the techniques used in
the PL/C compiler(6]

6. Summary

This brief description cannot describe all of the features available with PLUM
and the structure of the system. It is designed as a total interactive system to be
used in designing and implementing PL/I programs. Various options at compile and
execution time enable the user to get valuable information about the behavior of his
program, and the interactive facilities enable the user to easily, effectively and
quickly switch among compiling, executing, debugging and editing phases of his
program. These facilities should enable the user to implement programs in minimum

amount of time with resulting lower overhead costs to the EXEC 8 operating system.

Reference

1. Conway, R. W., and Wilcox, T. R., Design and Implementation of a Diagnostic com-
piler for PL/I, CACM 16-3, 169-179(March 1973).

2. ECMA and ANSI, PL/I BASIS 1, BASIS/1-10, ECMA(June 1973).

3. Zelkowits, M. V., PLUM Reference Manual, University of Maryland, Computer Science
Center, Computer Note CN-8(July 1974).

4. Ingalls, D., The Execution Time Profile as a Programming Tool, Design and Optimi-
zation of Compilers, Courant Computer Science Symposium 5, Prentice-Hall, 107-128
(1972)

5. Zelkowits, M. V., PLUM: The University of Maryland PL/I System, University of
Maryland, Computer Science Center, TR-318(July 1974).

6. Wilcox, T. R., Generating Machine Code for High-Level Programming Language,

p. 198, Cornell University(1971). €

