90

(U P e A S TaylaY

An Implementation of the Operating System (SOS)
Realizing the Cooperating Process in ALGOL or
FORTRAN

Norihisa Doi*

1, INTRODUCTION

Computer education of universities is in a steady progress in Japan. In Keio Uni-
versity not only the introductory course of programming but also many other lectures
on the information science are available for every student since the Institude of
Information Science was established five years ago.

One of those courses is of the operating system. In recent years the operating
system has become bigger and bigger and more and more complicated. It is very diffi-
cult to teach the essence of big and complicated operating system in a short period.
We therefore think such a system is necessary that allows students to grasp the
general concept of the operating system (even partially) and to realize a cooperating
process to a certain extent using high level languages. This is the standpoint from
which we developed a model of operating system which realizes the purposes in the
environment of ALGOL and FORTRAN.

Here we describe the operating system SOS

(The Structured Operating System). It is tovet| g | sbwracion | cmourcs | prmicve
designed basically on the nucleus extension stateword | storestateword

0 | process process current- setstartpoint
approach¥'? , but it also involves an attempt proce '"':“"“"'

createprocess
to separate and clarify the functions which ‘ sibling, reltives
iprocess tablel mdant, daughter

have conventionally been mingled together deleteprocess

1 | domuin | bpric sysiem readdescendant
indifferently, in other words to structurize of process resdsibling

cresteobject
the system. domain inhennlf gramt
checkdomain
2. STRUCTURE OF NUCLEUS Yo Vimer held
‘ nootresdy | SEL,
Nucleus is a level of abstraction to o procems ""h:':

2 | scheduling | vistual & ehadule
abstract the processor.a) The structure of the proceasor [B auspend/relense
nucleus is shown in Fig. 1 along with main wakeup/block

Tt /810,
resources and primitives. It shows a multi- ::“
layer structure with several levels which are semaphore

semaphorearray
marked off with the horizontal lines. Each s ‘-:ﬂrmm mﬂinl fork

signal/wait
level consists of a set of related functions. await/cause
Some of the functions and resources belonging chunkp/chunky

to each level can be referred to from higher Fig. 1 The structure of the nucleus

levels but not from lower levels.

This paper first appeared in Japanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 16, No.1 (1975), pp. 7~14.

* Keio Institute of Information Science, Keio University.

91

There are three kinds of level classification as described below. The first one
classifies levels (levels O to 3) according to responsibility. It supports the ab-
straction of processor and gives the logical essentials of the levels of the ab-
straction of processor. In other words the processor is abstracted by means of res-~
ponsibility classified into levels. To carry out each responsibility, corresponding
resources, particularly a data base, are needed. In this sense this classification of
levels is an abstraction corresponding to resources and the responsibilities are the
results of the abstraction. The second classification consists of functional levels
with resources, which constitute the levels of abstraction of responsibilities,
divided finely. This classification clarifies the process of abstraction up to the
preceding stage and enables stepwise design. The third classification is purely func-
tional.

Primitives and ordinary operations are

type P=l.-mazimum number of process;
organized by a pile-up method which piles up D=1 number of capabiliti
procedure fork
(var i: P; pname: alphs; startpoint: sddres; p: integer;
d: array [D] of Integer);
in

operations of low primitivities on the basis

of high primitivity operations. Primitives
storestateword ;
ir=createprocess (pname, p);

are the operations which are used in levels
setstartpoint (startpoint, process[i]. stateword);

higher than the level to which the operations ":"‘“‘ﬁ
belong. The primitivity is the degree of Fig. 2 primitive fork
5. 2 p
abstraction of a primitive. For example,
fork which is a primitive to initiate an -
primiti P used to the primitive
asynchronous operation consists of wehedule | execureprocess, seteerrentorocess, bold
; o modi) , —
storestateword, createprocess, setstartpoint suspend | Loy, modifyactiveprocess, schedule dsughter,
and start (Pig. 2%). Principal primitives rlese | moditysuspended. sscendant, daugher, ibling.
and primitives used to realize the principal wskevp pxﬁﬁfmmJum&m,ﬁuMuummm
inreadylia
ones are shown in Fig. 3. bock | moremaiemord, setae, s, davgheer,
The development and improvement are very aeart siorestateword, seustate, dagher, inreadylin
ule
easy since operations of lower primitivities o 3, setstare, avcend =
P schedule
are realized organically, resources are made Tork] ; o
to belong to each level exclusively, and signal soce, release
wait storestateword, suspend, suce

multilayer structure with many levels are
Fig. 3 The state of the pile of primitives

running
' —\\\\\?mk
i lexecuteprocess) \
|

' wakeLp 1
resdy T _ blocked

blech
start ' I stop

employed.

3. SCHEDULING
A system of processes are formed under the
nucleus described in Chapter 2. A process of stop

the system can stay in one of five states:

dead, dormant, ready, blocked and running.

dormant
Transition between the states and associated
premitives are shown in Fig. 4. The states createprocess | | deleteprazess
of ready and blocked are further divided into dead

the states of suspended and unsuspended.
Transition between these states are illust-

rated exactly in relation to the operations

Fig. 4 The states of processes and the primi-
tives that cause the transitions between
them

92

and state variables of the system in Fig. 5.
ready A unsuspended
Actually the running state is considered as {-unstate = ready A suspendeds 0]

a part of the ready state. In synchronous Mmicjjzﬁwm “Mw<>>{“k

operations other than wakeup/block, there-

ready A Susp ked A unsusp
fore, transitions occur between the states of (ronstate - ready A suspended>) (runstate-bloz2
ready unsuspended and ready suspended.
wakeup block release suspenc
Short-term scheduling made in the nucleus
selects a process of the highest priority out blocked A suspended
[runstate =blocked A suspended>0]

of the processes under the ready unsuspended
Fig. 5 The relation between ready/blocked,
suspended/unsuspended, and the primi-

This is a way of coexistence for all synchro- tives.

state and allots the processor to the process.

nous operations.

S0S which realizes pseudo-parallel processing in the language processor is pro-
cessed as a process in the whole system. If no process is registered in the readylist
or processes entered in the readylist are all under the ready suspended state, the
system enters into an endless loop and SOS does not work as an operating system any
more. To prevent such a catastrophe, time and a process can be assigned so that the
processor be allotted forcibly to the assigned process after the designated time has
elapsed. (Strictly speaking, SOS abandons the processor voluntarily for the desig-
nated span of time.)

4. PROTECTION

At present SOS protects processes, reference to procedures (including primitives
defined in the nucleus) and address locations, applying the concept domain?

The rights of control and communication between processes are managed with a list
which holds the hierarchical relations of processes. The domain of process involves
the reference to procedures. Potential capability of process on reference can be
defined with primitive inherent. Procedures defined in user programs can be defined
as the object of capability with createobject. The right of ownership belongs to the
defined process. A process which has the right of ownership of an object can give the
right of use of the object to another process (ggggﬁ). A parent process can transfer
the capability which is assured by its right to children processes (as the parameters
of §§§£§) at the beginning of the execution of the children processes. Procedures
defined with createobject can check the right of use using checkdomain.

Concerning the reference of addressed locations, the definition of potential capa-

bility of procedure uses the character of language.

5. PROCESSING OF STATEWORDS
When using primitives which may transfer control to other process, such as start,
stop and wait, it is necessary to save the statewords? which are effective at the time
of referring the primitives. For this purpose, a procedure which saves main registers
is made with the assembler. At the time of collection, the entry point of the pro-
cedure of these primitives is replaced with the instruction which calls the saving

procedure and the instruction at the entry point of the primitives is inserted in the

entry point of the saving procedure.

6.
S0S does not allow essentially for the

APPLICATION

same code to run simultaneously as different
processes. Such a necessity, if arises, can
be generally met by preparing the codes as
many as the processes.

As an example of ,the application of SOS,
parts of the simulation program (FORTRAN) of
the Five Dining Phylosophers“ are shown in
Figs., 6 and T.

The algorithm for philosopher 1 is given
in Fig. 6. MODIFY is a procedure to modify
forks available for neighboring

TT and TTT are the times they

the number of
philosophers.
Fig. 7 shows

start and end eating spaghetti.

a part of the scheduler (a process) which

R &4
C IltLU.La LL

ne puilOSOFuel“
been generated and initiated, using a time
table.

are synchronized with semaphore MASTER and

The scheduler and philosopher process

array semaphore SEM. Fig. 8 shows a part of

the results of the execution. The figures

enclosed with asterisks indicate the philos-
ophers who have started eating, and two
figures which correspond to TT and TTT res-
pectively follow.

A 6297966 ©2979968

3

3 62979995

2 62980216 62980516

4« 62980507

* 629R0541 6298U641

*2 % 62980745 62981645

Fig.6 The algorithm for the phylosopher 1.

annon

wa

[

-

N

1001

1000

Fig. 7 The scheduler for the phylosophers’

62979779

62980195

62981307

Fig. 8 The result of the simulation of the dining phylosophers’ system.

This makes it possible to switch processes.

KENJA=1

LLLLYY

10 CUCVXNUI
= muwuvnxo.
) 60 TO 10
CALL SlﬂlALllAs‘ER)

1
CM.L WAITISEM(1¢P1))
CALL WalTIFSEM

)
12 IFC PORKS (1) +Fu. 2) GO TO 1L

CALL AWAIT(EVFHT oFSEM)
60 10 12

11 CONTIME
CALL MOULFY(1s=1)
CALL STGHALIFSEN)

13 COLTIME
T 3 WALOUCIV)®10.
IFC T LEUs 0) GO TO 13
CALL nnuu"
TIT = TYeTa10,
WRITE (62100) n-"'r
LU0 FORMAT{/* & 1 "'ll!vllsl)
MJ- S1GHAL (MASTER

CALL WAIT(SEM(1+P1))
CALL walT(FSEMY

CALL MODIFY(1e1)

CALL CAUSE(EVENT/FSEM)
CALL SIGHALIFSEY)

%0 TO 10

<

€

CALL FORX (P10 'kENJAL? ¢310+3+0)
CALL FORK(P2+ KENJA2® 1520+ 3+0)
CALL FORK(P3s 'KENJAS? ¢$30¢3,0)
CALL FORK (PS¢ 'kENJAN' 13800300}
CALL FOMK(PSs SKENJAS? »$30¢3+0)

SCHEQULER

o7
MARK (R)
CONT MU
CO1T INVE
CALL wAITIMASTEK)

ALSt.

16 «NOF. ENFLAG } GO TO 1002
CALL STGNAL (MALTER)

ENFLAG = .FALst.

v 10 1090

COnTINuE

CALL TiMeR(TT)
TIMILIP) = TTeTel00
MAKK 1) 3 L TRUP

Sw T FALSE.
ConT g
CONTHWE
§ 9 .61 7) G0 YO8
THL ciOT. MARR L) 1 60
IFLTT oLTe TINETLIUY l 60 103
MARK(J) = JFALSE
CALL SIGHAL(SEMELrOT)
Sa = o INUE.
COuT Wit

15t .nuv. NAu-\l])) 60 TO 1v0
IHE ENLINE LLE.
ENTINE 3 TIMETLID)
CONTL
ChLL TIMER(TTY
EHTINE = ENTIME=TT
60 TU >

CONTINUE

CALL TIMEN(TT)
Sw T JFALSE
0 To o

system.

62980479

+ 1) <AMD. (.NOT, Sw)) GO TO 1000

TIMETLID)) so 10 1001

ATT TRIC Aar TAMAATTIATIAMT AN Am MITT TITATAMT AL AT ATTY AMTAA QUOMTRL

7. PROBLEMS ON THE INCORPORATION OF THE FUNCTIONS OF OPERATING SYSTH

The functions of operating system should be generally involved in the programming
language itself as its functions or elements like reserved words. In our attempt,
however, the incorporation of OS functions is restricted because a high level language
is used to make our system without modifying the language processor. Although it is
necessary to realize as natural one as possible, it is impossible to make completely
the same one on the processing of queues and so on. Two important problems must be
considered for it. The first one is the form of reference. If ALGOL or FORTRAN is
used, however no means are available other than the procedure (or,subprogram) to im-
plement function. The second problem is how to realize the functions, which influ-
ences the easiness of use. When realizing the functions of OS on a programming lan-
guage, we cannot help indicating concretely what the operating system should tacitly
perform originally. We simplified the method of implementation and made effort to
incorporate the functions in a form as natural as possible. But in some primitives,

potential functions are seen explicitly.

8. PROBLEMS ON REALIZING OS WITH ALGOL/FORTRAN

The scheduler is the greatest problem on realizing an operating system using
ALGOL/FORTRAN. SOS may stop functioning depending on the states of processes of SOS
because SOS itself is regarded as a process as described before. It is necessary to
devise a means of escapement (see 3).

In the case of ALGOL, switching of processes involves problems. One is due to the
0S functions formed into procedures. When a primitive which may cause to switch from
a process to another is used, the scheduler may be called. In such a case, control is
transferred from the scheduler to the process through executeprocess. Because ALGOL
procedures are designed to allow recursive call, stack grows more and more, which may
require considerable area. In the second, simple saving and restoration of registers
which follow the switching of processes may not satisfactory, because, for example
UNIVAC ALGOL (SIMULA) allocates the pointers dynamically at the execution time even to
data areas which are most non-local declared in the outermost loop.

The block structure (and own) is convenient for the definition of potential capa-
bility of procedure in relation to the reference of addressed locations. But no means
are available which inhibit the reference of data which are non-local for the block.
Concerning this point, the FORTRAN version avoids the problem partially by using

labelled common blocks.

9. CONCLUSION

We have described a method to realize the cooperating process using existing lan-
guages, ALGOL and FORTRAN, which do not allow parallel processing, and the operating
system needed for the purpose. The operating system enables to carry out a demonstra-
tion of the latest principles, though more or less unnaturally. It is also very use-
ful as a teaching material.

On the design of the operating system, we attempted an approach to structurize the

systems This method makes it easy to understand, design, develop and maintain the

system, although it involves disadvantage on

95

FoRTRAN o™ p
3
overhead. statements® g:orda! (wvr‘:oz
level 0 k14
The memory areas needed for SOS (FORTRAN e 0 - = -
. : : . level 2 158 w 170
ver51on) are given in Fig. 9 for reference. level 3 119 a1 e
dat base 1,904
miscellaneocs*® 3,702 2,156
Acknow ledgement total 5 5,431 6,715

The author owes very much to Mr. Yoshio

(s} The summary of the SOS

TorTRan mpruetion
J e ate
Ohno and Mr. Kiichi Yamamoto of Keio Insti- statements® _(words) (words)
. . . . semaphore 10 0 12
tute of Information Science and Mr. Mitsukuni i 18 68 2
19 n F -3
Hasegawa of Nippon Univac Kaisha, Ltd. on await 9 % 1
cause 13 73 18

carrying out our plan. The author also (b) The sise of the typical primitives
. : soas * FORTRAN including debugging aids)
wishes to express his deep appreciation to T AN Program part (including debogging aide

Fig. 9

Prof. Yoshio Hayashi.

Reference

1)
2)
3)
4)
5)
6)

7)
8)

Brinch Hansen, P. : "The Nucleus of a Multiprogramming system," Comm. ACM, Vol.
13, No. 4, pp. 238-241, 250 (1970).

Takahashi, H., Kamada, H. : An Approach to the Design of Operating System,
Information Processing, Vol. 11, No. 1, pp. 20-31 (1970).

Dijkstra, E. W. : "The Structure of the "THE"-Multiprogramming System," Comm.
ACM, Vol. 11, No. 5, pp. 341-346 (1968).

Lampson, B. W. : "A Scheduling Philosophy for Multiprocessing System," Comm.
ACM, Vol. 11, No. 5, pp. 347-360 (1968).

Lampson, B. W. : "Dynamic Protection Structures,” Proc. of AFIPS FJCC, pp.
27-38 (1969).

Dijkstra, E. W. : "Hierarchical Ordering of Sequential Processes," Acta Infor-
matica, Vol. 1, No. 2, pp. 115-138 (1971).

Doi, H. : Solution to nano-pico school, Bit, Vol. 6, No. 4, pp. 115-138 (1971).

Wirth, N, : "The Programming Language Pascal," Acta Informatica, Vol. 1, pp.
35-63 (1971).

