0
[=1

A Language for Structured Programming:LSP(PL/1)

Kyota Aoki® Koichiro Ochimizu** Junichi Toyoda* and
Kokichi Tanaka*

1. Introduction

Structured Programming proposed by E.W.Dijikstra(l) (2) is of great advantage to
recognize the logical structure of a program. Well str&%tuted programs are easily
verified to be correct and are easy to be understood. On the other hand, it is also
undeniable fact that programmers search for an auxiliary tool effective to implement
structured programming.

In this paper, the authors describe a programming language LSP(L) which enables
us to make well-structured L programs in a systematic way, where L is the existing
programming language such as ALGOL, PL/1 or assembly languages. Thus the form of
LSP(L) depends on the programming language L. Here let us mainly discuss LSP(PL/1)
and its translator. Programming by LSP(PL/1) is divided into several stages as follows:
starting with a given problem, an actiontisdecomposed into several subactions and
each subaction is also decomposed into several subactions. Throughout the decomposi-
tion , only three refinement rules are applied in a repeated way. Each of them has
one entry and one exit, which gives the frame of the syntax of LSP(PL/1). All of the
subactions thus obtained are decoﬁposed into several statements of PL/1tt. Finishing
this last stage, programming is said to be completed. To develop a program by this
method is nothing else but to replace each action by a sequence of subactions in a
repeated way. This reminds us that there is a close relation between replacing-
actions and rewriting rules of the generative grammar. By formalizing a decomposing

process as a rewriting rule, the syntax of LSP(PL/1) is obtained. Thus a LSP(PL/1)

+ "action" is the similar notion to "processor" described in reference (3),
(Chapter 2, Fundamental Notions).

++A PL/1 statement is a subaction which is no more decomposed.

This paper first appeared in Japanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 15, No. 12 (1974), pp. 955~961.
* Department of Information and Computer Sciences, Faculty of Engineering Science,
Osaka University
** Department of Information Science, Faculty of Engineering, Shizuoka University

81

source program is assumed to be an ordered sequence of rewriting rules.

A LSP(PL/1) translator does the source program to the well-structured PL/1
program. Since the translator looks the "history of programming" through the sequence
of rewrinting rules. The translator automatically arranges the printing format of a
program and inserts the comment for each functional block in the object PL/1 program.
If there was not the translator, these processes would be overheads of programming

to many of programmers. The authors' system undertakes these important but trouble-

some works.
2, LSP(L)
In this section, the syntax of LSP(L) is given. Three refinement rules construct

the core of the syntax of LSP(L), which are shown in fig. 1.

S S]
: } H i I
] ' ' 1 [
) St ' I H)
' H ' H i
' b = i
1 H H \

i i ! ! i i
! oo : !
! : L o ,
¥ 1 1
H : !
] i

[}

(a) concatenation (b) selection (c) repetition

fig. 1 Three refinement rules

LSP(L) is generated by a grammar for LSP(L), that is,GSP(L) defined as follows:
GSP(L) = (VN’ VT’ P, S), where VN is a set of nonterminal symbols, VN is a set of
terminal symbols, P is a set of rewriting rules and S is a start symbol. They are
defined as follows: VN = {<action>, <action name>, <action 1>, <action 2>, <action 3>},
Vp = {SEL, WHITE, ,, ;, :=, @, [,]} U {<permissible statement inL>} U{<string over
the data set of L>}, S = <program>. P is a set of rewriting rules such as:

(1) <program> + <action>, (2) <action> - <action> <action>, (3) <action> + <action
name> : = [<action 1>]<action>, (4) <action> -+ <action name> : = SEL[<action 3>,
<action 2>, <action 2>]<action>, (5) <action> + <action name> : = WHILE[<action 3>,
<action 2>]<action>, (6) <action> + £ (¢ is a empty string), (7) <action 1> -+
<action 1>;<action 1>, (8) <action 1> -+ <action 2>, (9) <action 2> -+ <action name>,
(10) <action 2> + <permissible statement in L>, (11) <action 3> + <logical expression

in L>, (12) <action name> + <string over the data set of L>.

Obviously, rule(3) corresponds to concatenation, (4) does to selection and (5)

82

does to repetition.
3. LSP(PL/1)
Let us now define LSP(PL/1). The syntax diagrams of LSP(PL/1l) based on the

definition are shown in fig. 2. The syntax and the semantics of LSP(PL/1l) are

explained according to fig. 2 in the following.

(a) .program (b) program element
TN ST g e O T g g
(c) statement
_ (a) ROT BRGIN BLOCK instruction
NOT BEGIN BLOCK —Q (D
instruec .
4 77\
BEGIN BLOCK 9,
instr
_ — SELECT (e) BEGIN BLOCK instruction
instru
| vETE +@L)-Qparameter———@——
| instruction | V

0
inst L"“""‘(:)"""‘)

(£) SELECT instruction "L¥ peans a blank.

SO X
Jparameter]

(h) REPEAT instruction

variable calar scalar ¢ (:)
REP <M of PL/1 rC:)'{E;ression'{:)_expression Drpparameter

(i) parameter (J) 1label

simple statement]
of PL/1

scalar expressio:

fig. 2 Syntax diagrams of LSP(PL/1)

A LSP(PL/1) program is defined as a sequence of program elements(fig. 2-a).
Each program element means that some action designated by "action name" is decomposed
into a sequence of subactions represented by the statement(fig. 2-b). A statement

is one of five instructions(fig. 2-c), and the reason why five instructions are

83
provided for LSP(PL/1) is as follows. LSP(PL/1) requires at least three kinds of

instructions corresponding to three refinement rules described in fig. 1. There are
two types to realize concatenation: one is "NOT BEGIN BLOCK instruction'(fig. 2-d)

and the other is "BEGIN BLOCK instruction"(fig. 2-e). The latter is represented as a
BEGIN block structure in the object PL/1 program, but the former is merely represented
as a DO group of a sequence of PL/1 statements in the object PL/1 program. In fig.2-d
and 2-e, a sequence of parameters enclosed by "<" and ">" corresponds to a sequence

of subactions decomposed. A parameter is a PL/l statement or an action name following
"@" which means that more decomposition required (fig. 2-i). A delimeter between
parameters is ";" or "/", where "/" means CRLF. There is one type to realize selec-
tion. Tt is called '"SELECT instruction" (fig. 2-f) and, in the object PL/1 program,
represented as an IF compound statement. In fig. 2-f, the first "parameter" denotes a
THEN clause and the second denotes an ELSE clause. There are two types to realize a
repetition. One is "WHILE instruction" (fig. 2-g) and the other is "REPEAT instruc-
tion" (fig. 2-h). 1In fig. 2-g, "parameter" denotes a DO body. A WHILE instruction is
represented as a DO WHILE statement in an object PL/1 program. A REPEAT instruction
is represented as a DO loop in an object PL/1 program. Each program element is able
to have a label. Labels enclosed by "(((" and ")))" are interpreted to be external
procedure names. Labels enclosed by "(('and "))" are interpreted to be internal
procedure names. Labels enclosed by "(" and ")" are interpreted to be other labels.
More detailed explanation about the syntax of LSP(PL/1) is abbreviated due to the space
limitation. The authors' LSP(PL/1) translator is written by PL/1 (program size is
about 2000 steps) and it is implemented on the FACOM 230-45S. Detailed explanations

about the translator are also abbreviated.

Pwot etntria

ST N
4. An example of programming T et L1+ oent30. 20D F1vke SLmCIND
Yo o tl

A simple example of LSP(PL/1) programming B o e secTio
AN SECT 0N =Bk £8 o= e
i

GITITIe0WT LISS (IC“':‘J) ” lll"“;':‘:‘." I”?

321+ PRSPPI

is shown. A programming example is to make
"a magic square of odd order". A LSP(PL/1) fig. 3 A tSP(PL/I) source program
program is shown in fig. 3. An output of

the translator is shown in fig. 4. The authors

design the program as shown in fig. 5. In fig. 4, action names in LSP(PL/1) program
are utilized as the comments in an object PL/1 program. Proper indentations are

achieved according to the logical structure of the program.

. Conclusion TAARELATON P08 LISGLILY PROSRM

STICTURES pROSAMIING LIST

The LISP(PL/1) proposed here encourages s maeICIneC TIOROMIES

€€ InITIA D) ’.:
programmers to make programs by the use of « » &
2 SO ENenZoRoRL el o Jonl30.30)) FIRED BIN(1SIS ’.
TS .’
structured programming technique. Moreover, s &UawTT” .
€€ INTTIMIZE) . o
: ::::rlll-(I-l)I)-lIJ-l-lln(lol-.hl)-ll
a programming system on LSP(PL/1) is able s
’
<¢ 2007 3 k4]
to make programmers free from the tedious ¥ ewn .
4¢ Ixecvrt » L4
Aken23 3 ,
work in structured programming. As a result, B xveraaaty wer » :
€¢ Maln SECTION D) o
devote themselves to the » ¥rom Z
programmers can devote themselves to < romt, 3]
E0Y Tellnt 004 . ‘
H Tenoatied et
problem solving. § sy
<4 EICTPTION > 3
3 0nsg ol
2 JoM0BEI=3 008
g} O."“I:ltm-lll
n,
»] o
R -'&mmr l::n-n.n) DO J=1 TO %) 00 Jey TO WIIF b
37 bt -

fig. 4 An object PL/I
program for fig. 3

N,N2,...) FIX N(15)

DECLARE
PROC 0PTIONSO4AIN) [WE=NAN
INITL INITIAL 80OY. ET LISTIN =N+ 1)/2-1
(1+1.3+1)=1
oRogR B00Y EXECUTE INITIALIZE R 3
| MAIN BODY
(R)UTEWP:; K1<N2
(o —— s Rl >N
SECT
NORMAL |EXCEPTION
NORMAL EXCEPTION
3=MODLJ-1,R)
IMUT+1,3 41K
K0
fig. S The refinement process
References

(1) 0. J. Dahl, E. W. Dijkstra and C. A. R. Hoare: Structured Programming, Academic
press, London, 1972.

(2) E. W. Dijkstra: GO TO Statement Considered Harmful (Letters to the Editor), Comm.
ACM, Vol. 11-3, pp. 147 - 148, 1968,

(3) Niklaus Wirth: Systematic Programming: An Introduction, Pretice-Hall, Inc.,

Englewood Cliffs, N. J., 1973

