41

On the Implementation of Synchronization
Primitives

Nobuo Saito*

Abstract

The synchronization primitives play an important role in an asynchronous control
program system, and the problem in the implementation of these primitives are dis-
cussed.

In the implementation procedure of these primitives, several operations should be
indivisibly executed. The author investigated the part of the procedure which should
be considered as an indivisible operation by considering typical synchronization
problems.

The realization of indivisible operation is also an important problem. Several
hardware mechanisms are required to realize these operations, and the problems in
using these mechanisms are also discussed from the point of comput;r system organi-

zations.

1. Introduction

In an asynchronous control program system, a set of synchronization primitives is
provided for programs to communicate with each other. A semaphore systém, a typlcal
1)

synchronization primitive set, was proposed by Dijkstra™’, and several kinds of its

extended systems have been reportedz_A). It 18 so universally designed that the
properties of other synchronization primitives can be expressed in terms of this
system. This paper defines a general form of synchronization primitives, and several
sets of primitives are described by using 1it.

When synchronization primitives are implemented in an operating system, a certain
region of an implementing procedure should be executed as an indivisible operation:
once started, it should not be intervened by any other operations such as external
interruptions until the end of this region. This paper investigates the part of the
procedure which should be indivisibly executed in consideration of several typical
synchronization problems.

In order to realize an indivisible operation, some basic mechanisms are required
in a low level system, or a hardware system. This paper summarizes these mechanisms,

and several problems of them are discussed especially for a multiprocessor system.

2, General Form of Synchronization Primitives

Common properties of synchronization primitives reported so far are expressed by

This paper first appeared in Japanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol 15, No. 11 (1974), pp. 841~849.
* Institute of Electronics and Information Science, The University of Tsukuba

42

the following general form.

(1) synchronization variables
x = (xl,xz,...,xn)
(global variables, usually a vector consisting of 1
n scalar variables))
]
(2) consume operation]
The detailed flow of the consume operation is :
1
shown in fig. 1. 1In this fiow, C(x) is calied a 1
pass condition: it must be satisfied when the
consume operation is passed. A mapping D:x+*x is
called a down function: it is usually a monotonic Fig.l the detailed flow of
decreasing function of x. In general, enclosed consume operation
part by a dashed 1line in fig.l should be in-
divisibly executed. In this operation, a program (begin)
waits until its synchronization state satisfies a
specified condition, and when satisfied, its
state should be transitioned to the prespecified
x «U(x)
one. =
(3) produce operation
The detailed flow of the produce operation is ‘ end >
shown in fig.2. A mapping U:x-+x is called an up
~o Fig.2 the detailed flow
function: it is usually a monotonic increasing of produce operation
function of x. In this operation, the state
which does not satisfy the pass condition is usually transitioned to the state
which satisfies it. In this sense, it is an inverse of the consume operation.
In the flow of the consume operation, a busy waiting form is used. It is not
desirable in view of the processor utilization. It is, however, very convenient
Table 1 synchronization primitives in general form
consume operation assigns produce operation
ment
synchro- synchro- using ’335580-
nization nization pass down func. ment
primitive jvariable condition using
system x clx) x = D(x) up func.
~ x+U(x)
standard 1) s P(8) $>0 S«(8-1) v(s) S « (5+1)
|semaphore
PV Multiple 2) | S,s,,. ,S,‘!P(S\,Sz,. .8, IV1i 850 V3 si«-(g,.l)w(s"s". . ,S,)VJ g»(g,-pl)
(1sisn) (1=32n) (1s3sn)
PV Chunk 3) s P(S,n) SE€q S~(s-p) | v(s.n) S +(8+p)
up/down systeml) S,S,..,8, [own(Sy) 5;20 *4 5, «(5.-1) | up(s,) Sp¢(8;+1)
wakeup/block 5) | WWS(wakeupd block WWS=ON WWS«OFF | wakeup WWS« ON
waiting
switch)
Dock/unlock 6) finterlock lock interlock | interlock | unlock interlock
key key=0FF key «— ON key <« OFF

* conditional branch operation for the pass condition and assignment operation
using the down function may not be executed in one indivisible operation.
this is the pass condition for a semaphore application {

Sl’SQ""’

sn}.

43

to use this form when the formal semantics of a synchronization primitive is discussed,
and it is used through this paper.
Several kinds of synchronization primitives proposed so far are summarized in table

1 by using a general form.

3. The necessity of Indivisible Operation
A synchronization primitive can be implemented as a general form mentioned in the

previous section. In the consume operation, a certain part of operations should be
executed as one indivisible operation. This section

investigated such a part for two synchronization prob-

______1 AI_____,
lems. Egter lI IEnter 2I
Gl

3.1 Mutual Exclusion Problem cS 1 CcS 2
1)

Consider the mutual exclusion problem in a system | Exit i] lﬁkit 2]

P=(P1,P2), consisting of two processes. As is shown in [iii-—_] [--k--1
R1 R 2

fig.3, a critical section is preceded by an Enter com-

mand and is succeeded by an Exist command.
Fig.3 mutual exclusion

Definition 1 (Definitions of several terms are given in problem
Appendix)
The process Pl and P2 are mutually exclusive with respect to the critical section
CS 1if the following two partial sequences cannot be included in the execution sequence
generated by the execution function ¢ (P1,P2,Y), provided that an initial condition SO
and an oracle Y define the state transition function JZZZ(e(Pl,PZ,Y),SO).
Ty = Enterl - T;' . Enter2 (1)
T, = Enter2 - T,' - Enterl (2)
where T;' is a finite sequence which does not include Exitl;
T2' 1s a finite sequence which does not include Exit2.
Two solutions are shown in fig.4(solution 1) and in fig.5(solution 2). In the
solution 2, the region enclosed by a dashed line is assumed to be executed as one in-

divisible operation.

x:=1;(initial value)
Pl P2

x:=1;(initial value)

divisible

Fig.k solution 1 Fig.5 solution 2

44

Proposition 1 PR
The solution 1 does not solve the mutual
exclusion problem, but the solution 2 solves
the mutual exclusion problem correctly. m
(Proof is omitted.)
3.2 Producer-Consumer Problem Fig.6 producer-consumer
2) problem

Consider the producer-consumer problem

consisting of a producer(PR) and a consumer
(CON) (fig.6). x:=0; (initial value)
Definition 2 PR

The processes PR and CON are correctly
related as the producer-consumer if any
prefix T of the execution sequence generated
by the execution function €(PR,CON,Y) satis-

fies the following condition, provided that (Send)
Fig.7 solution 3

an initial state S0 and an oracle y define

the state transition function :772}(5 (PR,CON,Y),SO).
N_(Receive) £ N_(Send) 3)
where NT(Receive) is the number of Receive commands in the prefix T, and NT(Semﬂ
is the number of Send commands in the prefix T.

The solution for this problem is shown in fig.7(solution 3).

Proposition 2
The solution 3 solves the producer-consumer problem correctly (Proof is omitted).

Proposition 2 shows that for some cases of synchronization, the conditional branch
operation for the pass condition and the assignment operation using the down function

are not necessarily executed in one indivisible operation.

4. Realization of Indivisible Operation

indivisible .
Fe———fF--- '

In the implementation of synchronization primitives
mentioned in the previous section, it is required that a

certain sequence of operations should be indivisibly

executed. Some basic hardware mechanism is required to L
realize an indivisible operation, and this section
discusses such a mechanism from the point of a computer
system organization. Fig.8 TS instruction
In a single processor system, it is possible to
realize an indivisible operation if the processor has an execution mode (for example,
supervisor mode or master mode) in which an interruption is prohibited for an arbitra-
ry time interval.
When processors in a multiprocessor system are connected via shared memory, it is
possible to realize an indivisible operation if you use TS(Test and Set) instruction,
a kind of the consume operation implemented as a hardware instruction. Fig. 8 shows

the detail of this instruction.

45

In a multiprocessor system without shared memory, processors are usually connected
via communication iines or data exchange moduies. In order to realize an indivisible
operation through use of such a communication device, it 1s necessary to simulate TS
instruction.

In ademocratic organization (f1g.9(1)), (1) democratic (2) tyrannic

organization organization
each of the processors prepares a flag.
TS instruction is considered to be simu-
lated when 'Test and Set' for all these
ags are completed.
In a tyrannic organization (£1ig.9(2)), dé @
TS instruction can be simulated by test-
(3) Iinear ordered
ing and setting a common flag prepared in organization (4) tree structure
organization
the main memory of the master processor. @

Consider a system organization with

several hierarchical levels. In a linear »
i

ordered organization (f1g.9(3)), a pro-

cessor 1 is considered to realize an in-
divisible operation if it finishes test- @ @ @ @ @

ing and setting flags of processors

jJ(1 83 S1). In a tree structure organ- Fig. 9 processor organization

ization (fig.9(4)), the processor of the

root of each subtree plays the same role of a master processor in a tyrannic organiza-
tion. Thus, an indivisible operation can be easily realized among the processor be-

longing to a subtree.

5. Concluding Remarks
This paper defines a general form of synchronization primitives. The regions of

indivisible operations in implementing procedures of these primitives are then dis-
cussed. It is shown that the conditional branch operation for the pass condition and
the assignment operation using a down function in the consume operation are not neces-
sarily executed indivisibly when used in a producer-consumer problem.

It is also discussed what kinds of hardware mechanisms are required in realizing
these indivisible operations for several system organizations. A further discussion
will be necessary to investigate an efficient method of realization of the indivisi-

bility in a multiprocessor system without shared memory.

Acknowledgement
The author would like to thank Dr. O. Ishii and Dr. H. Nishino of Electrotechnical

Laboratory, Prof. T. Nishimura of the University of Tsukuba for their encouragement to

this work.

References

1) E.W.Dijkstra: Co-operating Sequential Processes, Programming Languages, (ed. F.
Genuys), Academic Press, New York, pp.43-112(1968)

2) S.S.Patil: Limitations and Capabilities of Dijkstra's Semaphore Primitives among

Processes, Computation Structures Group Memo, Project MAC, MIT (1971)

van Lamsweerde: On an Extension of Dijketra's Semaphore

Primitives, Information Processing Letters, Vol.l, No.5, pp.181-186 (1972)

4) P.L.Wodon: Still Another Tool for Synchronizing Co-operating Processes, Carnegie-
Mellon University (1972)

5) J.H.Saltzer: Traffic Control in a Multiplexed Computer System, MAC-TR-30, Project
MAC, MIT (1966)

6) J.B.Dennis and E.C.Van Horn: Programming Semantics for Multiprogrammed Computa-
tions, CACM, Vol.9, No.3, pp.143-155 (1966)

7) D.Scott and C.Strachey: Towards a Mathematical Semantics for Computer Languages,
Proc. of the Symposium on Computers and Automata, Polytechnic Institute of
Brooklyn, pp.19-46 (1971)

8) J.M.Cadiou and J.J.Levy: Mechanizable Proofs about Parallel Processes, IEEE l4th
Annual Symposium on Switching and Automata Theory, pp.34-48 (1973)

Appendix
< Mathematical Semantics of Asynchronous Control Programs >7:8)

Consider P consisting of two processes Pl and P2. A system state S is a function
S:1d+Val, where Id is a set of identifiers and Val is a set of values. An execution
function € :P1 x P2 x ' +I gives an execution sequence of operators, and a state tran-
sition function JR : I x S+S gives a global state transition caused by P. They are
defined by the following recursive definitions.

€(P1,P2,Y) & if hd(Y)=1 then hd(P1l)-e(t1(P1),P2,t1(Y))

elge hd(P2)-e(P1,t1(P2),t1(Y)) (4)

IR (Z,8)<« 1if hd(ZI)=null then S ﬂs_e_m(tl(L), o(hd(L),S)) (5)

where

w*
p1dm, M, = {operators in process P1},
p2 & .Y N, = {operators in process P2},

yel T A {1,2}* (oracle, a random sequence of the number of the processes
which specifies the process to be executed next),

T = (Mull,)¥ (execution sequence),

g:MTx8s~+8 (semantic function of operator II),

hd: head function, tl: tail function, . : concatenation for symbol strings.

* Given a set X of symbols, X* is a string consisting of elements of X.

